

Konštrukčné údaje

OPTIMUS PRO Mono

18~30 kW

OBSAH

1. časť	Všeobecné informácie	. 3
2. časť	Konštrukčné údaje	19
3. časť	Inštalácia a nastavenia na mieste	35

1. časť

Všeobecné informácie

1 Systém OPTIMUS PRO Mono	4
2 Výkon jednotky	6
3 Názvoslovie	6
4 Projektovanie systému a výber jednotky	7
5 Typické spôsoby použitia	9

1 Systém OPTIMUS PRO Mono

1.1 Schéma systému

Obrázok 1-1.1: Schéma systému

OPTIMUS PRO Mono je integrovaný systém tepelného čerpadla typu vzduch-voda, ktorý predstavuje komplexné riešenie na vykurovanie interiérových priestorov, chladenie miestností aj prípravu teplej úžitkovej vody. Vonkajšia jednotka tepelného čerpadla odoberá teplo z vonkajšieho vzduchu a odovzdáva toto teplo cez potrubie s chladivom do doskového výmenníka tepla v hydraulickom systéme. Zohriata voda v hydraulickom systéme cirkuluje do nízkoteplotných zdrojov vykurovacieho tepla (systém podlahového vykurovania alebo nízkoteplotné radiátory) slúžiacich na vykurovanie miestností, ako aj do zásobníka teplej úžitkovej vody slúžiaceho na ohrev úžitkovej vody. 4-cestný ventil vo vonkajšej jednotke dokáže obrátiť cyklus prenosu tepla chladivom, vďaka čomu dokáže hydraulický systém poskytovať chladnú vodu na chladenie prostredníctvom izbových klimatizačných jednotiek (s cievkou na chladenie).

Spolu s poklesom teploty okolitého prostredia klesá aj vykurovací výkon tepelných čerpadiel. Do systému OPTIMUS PRO Mono je možné nainštalovať záložný elektrický ohrievač poskytujúci prídavný vykurovací výkon počas extrémne chladných poveternostných podmienok, v rámci ktorých nepostačuje výkon samotného tepelného čerpadla. Záložný elektrický ohrievač zároveň slúži ako záložný zdroj tepla pri poruche tepelného čerpadla, aj ako protimrazová ochrana vodovodných potrubí vonkajšej jednotky v zimnom období.

1.2 Konfigurácie systému

OPTIMUS PRO Mono je možné nakonfigurovať tak, aby fungoval so zapnutým alebo vypnutým elektrickým ohrievacím telesom a môže sa zároveň používať v kombinácii s prídavným zdrojom tepla, ako je kotol.

Od zvolenej konfigurácie potom závisí požadovaná výkonnostná trieda tepelného čerpadla. V nižšie uvedenej časti sú opísané tri typické konfigurácie. Pozrite obrázok 1-1.2.

Konfigurácia č. 1: Iba tepelné čerpadlo

- Požadovaný vykurovací výkon sa dosahuje iba pomocou tepelného čerpadla bez potreby prídavného ohrevu.
- Vyžaduje výber tepelného čerpadla s vyšším výkonom, a tým aj vyššie počiatočné investície.
- Ideálna konfigurácia do novostavieb, kde je hlavný dôraz kladený na energetickú účinnosť.

Konfigurácia č. 2: Tepelné čerpadlo a záložné elektrické ohrievacie teleso

- Požadovaný vykurovací výkon sa dosahuje pomocou tepelného čerpadla, až kým teplota okolitého prostredia neklesne pod hodnotu, pri ktorej tepelné čerpadlo už nedokáže poskytovať dostatočný vykurovací výkon. Keď teplota okolitého prostredia klesne pod tento bivalentný bod (znázornený na obr. 1-1.2), záložný elektrický ohrievač bude poskytovať prídavný vykurovací výkon.
- Najlepší pomer medzi počiatočnou investíciou a prevádzkovými nákladmi, vďaka čomu sa dosiahnu najnižšie náklady v rámci životného cyklu zariadenia.
- Ideálna konfigurácia do novostavieb.

Konfigurácia č. 3: Tepelné čerpadlo s prídavným zdrojom tepla

- Požadovaný vykurovací výkon sa dosahuje pomocou tepelného čerpadla, až kým teplota okolitého prostredia neklesne pod hodnotu, pri ktorej tepelné čerpadlo už nedokáže poskytovať dostatočný vykurovací výkon. Keď teplota okolitého prostredia klesne pod tento bivalentný bod (znázornený na obr. 1-1.2), v závislosti od nastavení systému sa na dosiahnutie požadovaného vykurovacieho výkonu buď použije prídavný zdroj tepla, alebo sa vypne tepelné čerpadlo a celý požadovaný výkon sa zabezpečí prostredníctvom prídavného zdroja tepla.
- Vďaka tomu je možné použiť aj menej výkonné tepelné čerpadlo.
- Ideálna konfigurácia pre renovácie a rekonštrukcie budov.

Obrázok 1-1.2: Konfigurácie systému

2 Výkon jednotky

Tabuľka 1-2.1: Rozsahy výkonov a vzhľad jednotiek

Výkon	18 kW	22 kW	26 kW	30 kW
Model (HOP)	18WMONO3	22WMONO3	26WMONO3	30WMONO3
Vzhľad			NORDIS NORDIS	

3 Názvoslovie

4 Projektovanie systému a výber jednotky

4.1 Postup pri výbere

Krok č. 1: Výpočet celkového tepelného zaťaženia

Poznámky:

- Ak požadované teploty vody zdrojov vykurovacieho tepla nie sú všetky rovnaké, nastavenie teploty vody na výstupe zariadenia OPTIMUS PRO Mono je potrebné nastaviť na najvyššiu teplotu požadovanú pre zdroje vykurovacieho tepla. Ak naprojektovaná teplota vody na výstupe klesne medzi dve teploty uvedené vo výkonovej tabuľke vonkajšej jednotky, vypočítajte korigovaný výkon interpoláciou.
- 2. Vyberte Mono jednotky, ktoré splnia požiadavky celkového tepelného aj chladiaceho zaťaženia.

4.2 Výber teploty vody na výstupe (LWT) zariadenia OPTIMUS PRO

Odporúčané rozsahy teploty LWT pri projektovaní pre rôzne typy zdrojov vykurovacieho tepla sú:

- Pre podlahové kúrenie: 30 až 35 °C
- Pre izbové klimatizačné jednotky: 30 až 45 °C
- Pre nízkoteplotné radiátory: 40 až 50 °C

4.3 Optimalizovanie systémov pri projektovaní

Aby ste so zariadením OPTIMUS PRO dosiahli maximálny možný tepelný komfort pri čo najnižšej spotrebe energie, je dôležité vziať do úvahy nasledujúce zásady:

- Vyberte také zdroje vykurovacieho tepla, ktoré umožňujú systému tepelného čerpadla fungovať pri čo najnižšej teplote teplej vody a súčasne pritom poskytovať dostatočný vykurovací výkon.
- Dbajte na to, aby ste zvolili správnu krivku závislosti od poveternostných podmienok, ktorá bude zodpovedať inštalačnému prostrediu (konštrukcia budovy, klimatické podmienky), ako aj požiadavkám konečného používateľa.
- Pripojením izbových termostatov (na mieste) k hydraulickému systému dokážete predísť nadmernému vykurovaniu miestností, pretože termostat odstaví vonkajšiu jednotku aj obehové čerpadlo, keď teplota v miestnosti prekročí teplotu nastavenú na termostate.

4.4 Upozornenie k záložnému ohrievaciemu telesu zásobníka

Tepelné čerpadlo sa zastaví, keď T5 (teplota zásobníka) dosiahne minimálnu hodnotu teploty T5S (nastavená teplota zásobníka) aj teploty T5stop (najvyššia teplota zásobníka, ktorú je možné dosiahnuť pri určitej teplote okolitého prostredia iba pomocou tepelného čerpadla) a táto sa udrží 5 s. Hodnota teploty T5stop je uvedená nižšie.

Ak je T5S vyššia ako T5stop, tak teplotu T5S nie je možné dosiahnuť iba pomocou tepelného čerpadla. V takomto prípade je na dosiahnutie teploty T5S nutné použiť záložné ohrievacie teleso zásobníka.

Hodnota T5stop:

	. 4	5
Teplota okolitého prostredia (°C) -25~21 -20~14 -15~-11 -10~-4 -5	-1 0~4 5~9	
T5stop(°C) 35 40 45 48 5	0 53 55	

Teplota okolitého prostredia (° $\mathbb C$)	10~14	15~19	20~24	25~29	30~34	35~39	40~43
T5stop(℃)	55	53	50	50	48	48	45

5 Typické spôsoby použitia

5.1 Vykurovanie miestností

Izbový termostat slúži ako spínač. Keď sa z izbového termostatu príjme požiadavka na vykurovanie, Mono jednotka sa spustí s cieľom dosiahnuť požadovanú teplotu vody nastavenú v používateľskom rozhraní. Keď teplota v miestnosti dosiahne teplotu nastavenú na termostate, jednotka sa vypne.

Obrázok 1-5.1: Vykurovanie miestností

Tahuľka	1 5 1.	v	ukurovania	miastností
ιαραικά	1-2.1.	V	укигочитте	mestnosti

Legenda			
1	Vonkajšia jednotka	5	lzbový termostat (dodávka stavby)
1,1	Manometer	6	Výpustný ventil (dodávka stavby)
1,2	Pretlakový ventil	7	Plniaci ventil (dodávka stavby)
1,3	Expanzná nádoba	8	Vyrovnávacia nádrž (dodávka stavby)
1,4	Doskový výmenník tepla	8,1	Odvzdušňovací ventil
1,5	Odvzdušňovací ventil	8,2	Výpustný ventil
1,6	Prietokový spínač	9	Expanzná nádoba (dodávka stavby)
1,7	P_i: Obehové čerpadlo vo vnútri jednotky	10	P_o: Samostatné obehové čerpadlo (dodávka stavby)
2	Filter v tvare Y	11	Rozdeľovač/Zberač (dodávka stavby)
3	Uzatvárací ventil (dodávka stavby)	FHL 1n	Systém okruhu podlahového vykurovania (dodávka stavby)
4	Používateľské rozhranie		

Poznámky:

5.2 Vykurovanie miestností a príprava TÚV pomocou solárneho systému

Vykurovanie miestností bez izbového termostatu pripojeného k jednotke. Zásobník na teplú úžitkovú vodu je pripojený k jednotke a zásobník je prepojený so solárnym vykurovacím systémom. Vodné čerpadlo solárneho systému je riadené prostredníctvom snímača teploty Tsolar. Snímač teploty vyrovnávacej nádrže sa používa na riadenie ZAP./VYP. tepelného čerpadla. Keď sa tepelné čerpadlo zastaví, zastaví sa zabudované obehové čerpadlo, aby sa ušetrila energia, a potom vyrovnávacia nádrž poskytne horúcu vodu na vykurovanie priestoru. Riadenie teploty vyrovnávacej nádrže sa okrem toho môže v rovnakom čase použiť tak na vykurovanie priestoru, ako aj na výrobu teplej úžitkovej vody.

Obrázok 1-5.2: Vykurovanie miestností a príprava TÚV pomocou solárneho systému

Vykurovanie miestností bez izbového termostatu pripojeného k jednotke. Zásobník na teplú úžitkovú vodu je pripojený k jednotke a zásobník je prepojený so solárnym vykurovacím systémom.

Tabuľka 1-5.2: Vykurovanie miestností a príprava TÚV pomocou solárneho systému

Legenda			
1	Vonkajšia jednotka	8,2	Výpustný ventil
1,1	Manometer	9	Expanzná nádoba (dodávka stavby)
1,2	Pretlakový ventil	10	P_o: Samostatné obehové čerpadlo (dodávka stavby)
1,3	Expanzná nádoba	11	Rozdeľovač/Zberač (dodávka stavby)
1,4	Doskový výmenník tepla	12	Zásobník na teplú úžitkovú vodu (dodávka stavby)
1,5	Odvzdušňovací ventil	12,1	Odvzdušňovací ventil
1,6	Prietokový spínač	12,2	Špirála výmenníka tepla
1,7	P_i: Obehové čerpadlo vo vnútri jednotky	12,3	Výhrevná vložka
2	Filter v tvare Y	13	T5: Snímač teploty
3	Uzatvárací ventil (dodávka stavby)	14	Zmiešavacia batéria (dodávka stavby)
4	Používateľské rozhranie	15	P_d: Cirkulačné čerpadlo TÚV (dodávka stavby)
5	SV1: 3-cestný ventil (dodávka stavby)	16	Jednocestný ventil (dodávka stavby)
6	Výpustný ventil (dodávka stavby)	17	Obtokový ventil (dodávka stavby)
7	Plniaci ventil (dodávka stavby)	18	Ohrevné teleso solárneho systému (dodávka stavby)
8	Vyrovnávacia nádrž (dodávka stavby)	19	P_s: Čerpadlo solárneho systému (dodávka stavby)
8,1	Odvzdušňovací ventil	FHL 1n	Systém okruhu podlahového vykurovania (dodávka stavby)

Poznámky:

5.3 Vykurovanie a chladenie miestností a príprava TÚV pomocou solárneho systému

Vykurovanie a chladenie miestností pomocou izbového termostatu vhodného na prepínanie medzi vykurovaní/ chladením pri pripojení k jednotke. Vykurovanie prebieha prostredníctvom systému podlahového kúrenia a izbových klimatizačných jednotiek. Chladenie prebieha iba prostredníctvom izbových klimatizačných jednotiek. Teplá úžitková voda sa získava pomocou zásobníka na teplú úžitkovú vodu pripojeného k jednotke.

Tabuľka 1-5.3: Vykurovanie a chladenie miestností a príprava TÚV pomocou solárneho systému

Legenda			
1	Vonkajšia jednotka	10	P_o: Vonkajšie obehové čerpadlo (dodávka stavby)
1,1	Manometer	11	Rozdeľovač/Zberač (dodávka stavby)
1,2	Pretlakový ventil	12	Zásobník na teplú úžitkovú vodu (dodávka stavby)
1,3	Expanzná nádoba	12,1	Odvzdušňovací ventil
1,4	Doskový výmenník tepla	12,2	Špirála výmenníka tepla
1,5	Odvzdušňovací ventil	12,3	Výhrevná vložka
1,6	Prietokový spínač	13	T5: Snímač teploty
1,7	P_i: Obehové čerpadlo vo vnútri jednotky	14	Zmiešavacia batéria (dodávka stavby)
2	Filter v tvare Y	15	P_d: Cirkulačné čerpadlo TÚV (dodávka stavby)
3	Uzatvárací ventil (dodávka stavby)	16	Jednocestný ventil (dodávka stavby)
4	Používateľské rozhranie	17	Obtokový ventil (dodávka stavby)
5	lzbový termostat (dodávka stavby)	18	SV1: 3-cestný ventil (dodávka stavby)
6	Výpustný ventil (dodávka stavby)	19	SV2: 3-cestný ventil (dodávka stavby)
7	Plniaci ventil (dodávka stavby)	20	Ohrevné teleso solárneho systému (zakúpiť samostatne)
8	Vyrovnávacia nádrž (dodávka stavby)	21	P_s: Čerpadlo solárneho systému (zakúpiť samostatne)
8,1	Odvzdušňovací ventil	FHL 1n	Systém okruhu podlahového vykurovania (zakúpiť samostatne)
8,2	Výpustný ventil	FCU 1n	Izbové klimatizačné jednotky (zakúpiť samostatne)
9	Expanzná nádoba (dodávka stavby)		

Poznámky:

5.4 Prídavný zdroj tepla (AHS) poskytuje teplo na vykurovanie miestností

Vykurovanie miestností buď prostredníctvom jednotky, alebo AHS zapojeného v systéme. Ak AHS iba poskytuje teplo na vykurovanie miestností, musí byť AHS integrovaný do potrubnej sústavy.

Obrázok 1-5.4: Prídavný zdroj tepla (AHS) poskytuje teplo na vykurovanie miestností

Tahuľka 1-5 4 [.]	Prídavný zdroi	tenla (AHS)	noskytuje t	enlo na	vvkurovanie	miestností
<i>iubuiku 1-5.4.</i>	Filluuviiy zuloj	tepiu (Alis)	ροδκγιαје ι	epioniu	vykurovume	mestnosti

Legenda			
1	Vonkajšia jednotka	8,2	Výpustný ventil
1,1	Manometer	9	Expanzná nádoba (dodávka stavby)
1,2	Pretlakový ventil	10	P_o: Samostatné obehové čerpadlo (dodávka stavby)
1,3	Expanzná nádoba	11	Rozdeľovač/Zberač (dodávka stavby)
1,4	Doskový výmenník tepla	12	Zásobník na teplú úžitkovú vodu (dodávka stavby)
1,5	Odvzdušňovací ventil	12,1	Odvzdušňovací ventil
1,6	Prietokový spínač	12,2	Špirála výmenníka tepla
1,7	P_i: Obehové čerpadlo vo vnútri jednotky	12,3	Výhrevná vložka
2	Filter v tvare Y	13	T5: Snímač teploty
3	Uzatvárací ventil (dodávka stavby)	14	Zmiešavacia batéria (dodávka stavby)
4	Používateľské rozhranie	15	P_d: Cirkulačné čerpadlo TÚV (dodávka stavby)
5	Uzatvárací ventil (dodávka stavby)	16	Jednocestný ventil (dodávka stavby)
6	Výpustný ventil (dodávka stavby)	17	T1: Snímač teploty odvádzanej vody (dodávka stavby)
7	Plniaci ventil (dodávka stavby)	18	SV1: 3-cestný ventil (dodávka stavby)
8	Vyrovnávacia nádrž (dodávka stavby)	FHL 1n	Systém okruhu podlahového vykurovania (dodávka stavby)
8,1	Odvzdušňovací ventil		

Poznámky:

5.5 Prídavný zdroj tepla (AHS) poskytuje teplo na vykurovanie miestností a prípravu TÚV

Vykurovanie miestností buď prostredníctvom jednotky, alebo AHS zapojeného v systéme. Je možná bivalentná prevádzka na vykurovanie miestností aj prípravu teplej úžitkovej vody pre domácnosť. Ak AHS poskytuje aj teplo na prípravu teplej úžitkovej vody, AHS je možné integrovať do potrubnej sústavy. Za týchto podmienok dokáže jednotka posielať signál na ZAP./VYP. do AHS v režime vykurovania, alebo AHS sa riadi samočinne v režime TÚV.

Tabuľka 1-5.5: Prídavný zdroj tepla (AHS) poskytuje teplo na vykurovanie miestností a prípravu TÚV

Legenda			
1	Vonkajšia jednotka	8,2	Výpustný ventil
1,1	Manometer	9	Expanzná nádoba (dodávka stavby)
1,2	Pretlakový ventil	10	P_o: Samostatné obehové čerpadlo (dodávka stavby)
1,3	Expanzná nádoba	11	Rozdeľovač/Zberač (dodávka stavby)
1,4	Doskový výmenník tepla	12	Zásobník na teplú úžitkovú vodu (dodávka stavby)
1,5	Odvzdušňovací ventil	12,1	Odvzdušňovací ventil
1,6	Prietokový spínač	12,2	Špirála výmenníka tepla
1,7	P_i: Obehové čerpadlo vo vnútri jednotky	12,3	Výhrevná vložka
2	Filter v tvare Y	13	T5: Snímač teploty
3	Uzatvárací ventil (dodávka stavby)	14	Zmiešavacia batéria (dodávka stavby)
4	Používateľské rozhranie	15	P_d: Cirkulačné čerpadlo TÚV (dodávka stavby)
5	Uzatvárací ventil (dodávka stavby)	16	Jednocestný ventil (dodávka stavby)
6	Výpustný ventil (dodávka stavby)	17	Prídavný zdroj tepla (dodávka stavby)
7	Plniaci ventil (dodávka stavby)	18	SV1: 3-cestný ventil (dodávka stavby)
8	Vyrovnávacia nádrž (dodávka stavby)	19	T1: Snímač teploty odvádzanej vody (dodávka stavby)
8,1	Odvzdušňovací ventil	FHL 1n	Systém okruhu podlahového vykurovania (dodávka stavby)

Poznámky:

5.6 Prídavný zdroj tepla (AHS) poskytuje teplo na prípravu TÚV

Obrázok 1-5.6: Prídavný zdroj tepla (AHS) poskytuje teplo na prípravu TÚV

Tabuľka 1-5.6: Prídavný zdroj tepla (AHS) poskytuje teplo na prípravu TÚV

Vonkajšia jednotka	8,2	Výpustný ventil
Manometer	9	Expanzná nádoba (dodávka stavby)
Pretlakový ventil	10	P_o: Samostatné obehové čerpadlo (dodávka stavby)
Expanzná nádoba	11	Rozdeľovač/Zberač (dodávka stavby)
Doskový výmenník tepla	12	Zásobník na teplú úžitkovú vodu (dodávka stavby)
Odvzdušňovací ventil	12,1	Odvzdušňovací ventil
Prietokový spínač	12,2	Špirála výmenníka tepla
P_i: Obehové čerpadlo vo vnútri jednotky	12,3	Výhrevná vložka
Filter v tvare Y	13	T5: Snímač teploty
Uzatvárací ventil (dodávka stavby)	14	Zmiešavacia batéria (dodávka stavby)
Používateľské rozhranie	15	P_d: Cirkulačné čerpadlo TÚV (dodávka stavby)
Uzatvárací ventil (dodávka stavby)	16	Jednocestný ventil (dodávka stavby)
Výpustný ventil (dodávka stavby)	17	Prídavný zdroj tepla (dodávka stavby)
Plniaci ventil (dodávka stavby)	18	SV1: 3-cestný ventil (dodávka stavby)
Vyrovnávacia nádrž (dodávka stavby)	FHL 1n	Systém okruhu podlahového vykurovania (dodávka stavby)
Odvzdušňovací ventil		
	Vonkajšia jednotkaManometerPretlakový ventilExpanzná nádobaDoskový výmenník teplaOdvzdušňovací ventilPrietokový spínačP_i: Obehové čerpadlo vo vnútri jednotkyFilter v tvare YUzatvárací ventil (dodávka stavby)Používateľské rozhranieUzatvárací ventil (dodávka stavby)Výpustný ventil (dodávka stavby)Plniaci ventil (dodávka stavby)Vyrovnávacia nádrž (dodávka stavby)Odvzdušňovací ventil	Vonkajšia jednotka8,2Manometer9Pretlakový ventil10Expanzná nádoba11Doskový výmenník tepla12Odvzdušňovací ventil12,1Prietokový spínač12,2P_i: Obehové čerpadlo vo vnútri jednotky12,3Filter v tvare Y13Uzatvárací ventil (dodávka stavby)14Používateľské rozhranie15Uzatvárací ventil (dodávka stavby)16Výpustný ventil (dodávka stavby)18Vyrovnávacia nádrž (dodávka stavby)FHL 1nOdvzdušňovací ventil12

Poznámky:

5.7 Využitie funkcie duálnej požadovanej hodnoty s dvoma izbovými termostatmi

Vykurovanie miestností s dvoma izbovými termostatmi prebieha prostredníctvom systému podlahového kúrenia a izbových klimatizačných jednotiek. Systém podlahového kúrenia a izbové klimatizačné jednotky vyžadujú odlišnú prevádzkovú teplotu vody. Systém podlahového vykurovania vyžaduje v režime vykurovania nižšiu teplotu vody ako izbové klimatizačné jednotky. Na účely dosiahnutia týchto dvoch požadovaných hodnôt sa použije zmiešavacia stanica slúžiaca na prispôsobenie teploty vody daným požiadavkám okruhov podlahového vykurovania. Izbové klimatizačné jednotky sú pripojené priamo k vodovodnému okruhu jednotky a potrubie okruhu podlahového kúrenia je pripojené až za zmiešavacou stanicou. Zmiešavaciu stanicu ovláda samotná jednotka (alebo riadenie na mieste inštalácie, prípadne sa ovláda samočinne). Prostredníctvom rozširovacej dosky hydraulického systému (voliteľné vybavenie), ktorá sa pripája medzi čerpadlovú skupinu a termostaty, je na ovládanie tepelného čerpadla dostupných maximálne 8 termostatov pre 8 miestností, čo výrazne zvyšuje komfort používania.

Obrázok 1-5.7: Využitie funkcie duálnej požadovanej hodnoty s dvoma izbovými termostatmi

Legenda			
1	Vonkajšia jednotka	7	Plniaci ventil (dodávka stavby)
1,1	Manometer	8	Vyrovnávacia nádrž (dodávka stavby)
1,2	Pretlakový ventil	8,1	Odvzdušňovací ventil
1,3	Expanzná nádoba	8,2	Výpustný ventil
1,4	Doskový výmenník tepla	9	Expanzná nádoba (dodávka stavby)
1,5	Odvzdušňovací ventil	10	P_o: Vonkajšie obehové čerpadlo (dodávka stavby)
1,6	prietokový spínač	11	Rozdeľovač/Zberač (dodávka stavby)
1,7	P_i: Obehové čerpadlo vo vnútri jednotky	12	Obtokový ventil (dodávka stavby)
2	Filter v tvare Y	13	Zmiešavacia stanica (dodávka stavby)
3	Uzatvárací ventil (dodávka stavby)	13,1	P_c: čerpadlo zóny 2 (dodávka stavby)
4	Používateľské rozhranie	13,2	SV3: 3-cestný ventil (dodávka stavby)
5 A	lzbový termostat pre zónu 1 (dodávka stavby)	14	Tw2: Snímač tepl. prietoku vody zóny 2 (dodávka stavby)
5B	lzbový termostat pre zónu 2 (dodávka stavby)	FHL 1n	Systém okruhu podlahového vykurovania (dodávka stavby)
6	Výpustný ventil (dodávka stavby)	FCU 1n	Izbové klimatizačné jednotky (dodávka stavby)

Poznámky:

5.8 Využitie funkcie duálnej požadovanej hodnoty bez termostatov

Vykurovanie prebieha prostredníctvom systému podlahového kúrenia a izbových klimatizačných jednotiek. Systém podlahového kúrenia a izbové klimatizačné jednotky vyžadujú odlišné prevádzkové teploty vody. Systém podlahového vykurovania vyžaduje v režime vykurovania nižšiu teplotu vody ako izbové klimatizačné jednotky. Na účely dosiahnutia týchto dvoch požadovaných hodnôt sa použije zmiešavacia stanica slúžiaca na prispôsobenie teploty vody daným požiadavkám okruhov podlahového vykurovania. Izbové klimatizačné jednotky je pripojené priamo k vodovodnému okruhu jednotky a potrubie okruhu podlahového kúrenia sú pripojené až za zmiešavacou stanicou. Zmiešavaciu stanicu ovláda samotná jednotka (alebo riadenie na mieste inštalácie, prípadne sa ovláda samočinne).

Tabuľka 1-5.8: Využitie funkcie duálnej požadovanej hodnoty bez termostatov

Legenda			
1	Vonkajšia jednotka	8	Vyrovnávacia nádrž (dodávka stavby)
1,1	Manometer	8,1	Odvzdušňovací ventil
1,2	Pretlakový ventil	8,2	Výpustný ventil
1,3	Expanzná nádoba	9	Expanzná nádoba (dodávka stavby)
1,4	Doskový výmenník tepla	10	P_o: Samostatné obehové čerpadlo (dodávka stavby)
1,5	Odvzdušňovací ventil	11	Rozdeľovač/Zberač (dodávka stavby)
1,6	Prietokový spínač	12	Obtokový ventil (dodávka stavby)
1,7	P_i: Obehové čerpadlo vo vnútri jednotky	13	Zmiešavacia stanica (dodávka stavby)
2	Filter v tvare Y	13,1	P_c: čerpadlo zóny 2 (dodávka stavby)
3	Uzatvárací ventil (dodávka stavby)	13,2	SV3: 3-cestný ventil (dodávka stavby)
4	Používateľské rozhranie	14	Tw2: Snímač tepl. prietoku vody zóny 2 (dodávka stavby)
5	Uzatvárací ventil (dodávka stavby)	FHL 1n	Systém okruhu podlahového vykurovania (dodávka stavby)
6	Výpustný ventil (dodávka stavby)	FCU 1n	Izbové klimatizačné jednotky (dodávka stavby)
7	Plniaci ventil (dodávka stavby)		

Poznámky:

5.9 Funkcia skupinového ovládania pre chladenie, vykurovanie a prípravu TÚV

Modularita je dokonale vhodná v prípade potreby rozšírenia výkonu, keď sa zvýšia požiadavky na chladenie/vykurovanie budovy. Je možné ovládať 6 jednotiek v rámci jednej skupiny. Prostredníctvom systému skupinového ovládania je možné riadiť a sledovať činnosť celého systému, a to iba jednoduchým pripojením Master (hlavnej) jednotky k používateľskému rozhraniu. Ak je potrebná funkcia TÚV, zásobník na vodu je možné pripojiť iba k vodovodnému okruhu Master jednotky prostredníctvom trojcestného ventilu a ovládať ho pomocou Master jednotky. Ak je potrebný prídavný zdroj tepla (AHS), je možné ho pripojiť iba k vodovodnému okruhu Master jednotky a ovládať ho pomocou Master jednotky. V paralelnom systéme musí byť nainštalovaný snímač teploty Tbt1 (v opačnom prípade nebude možné spustiť jednotku). Ak je vyrovnávacia nádrž príliš veľká, je potrebné pridať snímač Tbt2, aby sa zvýšila presnosť ovládania. Snímač Tbt2 sa nachádza v spodnej časti vyrovnávacej nádrže. Potrubné prípojky prívodného a vratného potrubia vody každej jednotky paralelného systému je potrebné pripojiť pružnými prípojkami a na vratnom potrubí vody musia byť nainštalované jednosmerné ventily.

Obrázok 1-5.9: Funkcia skupinového ovládania pre chladenie, vykurovanie a prípravu TÚV

Legenda			
1-1	Vonkajšia jednotka: Master (hlavná)	12,2	Špirála výmenníka tepla
1-21-n	Vonkajšia jednotka: Slave (podradená)	12,3	Výhrevná vložka
2	Filter v tvare Y	13	T5: Snímač tepl. zásobníka TÚV
3	Uzatvárací ventil (dodávka stavby)	14	Zmiešavacia batéria (dodávka stavby)
4	Používateľské rozhranie	15	P_d: Cirkulačné čerpadlo TÚV (dodávka stavby)
5	Prídavný zdroj tepla (kotol) (dodávka stavby)	16	Jednocestný ventil (dodávka stavby)
6	Výpustný ventil (dodávka stavby)	17	Obtokový ventil (dodávka stavby)
7	Plniaci ventil (dodávka stavby)	18	SV1: 3-cestný ventil (dodávka stavby)
8	Vyrovnávacia nádrž (dodávka stavby)	19	SV1: 3-cestný ventil (dodávka stavby)
8,1	Odvzdušňovací ventil	20	Zmiešavacia stanica (dodávka stavby)
8,2	Výpustný ventil	20,1	P_c: Čerpadlo zóny 2 (dodávka stavby)
9	Expanzná nádoba (dodávka stavby)	20,2	SV3: 3-cestný ventil (dodávka stavby)
10	P_o: Samostatné obehové čerpadlo (dodávka stavby)	21	Tw2: Snímač tepl. prietoku vody v zóne 2 (dodávka stavby)
11	Rozdeľovač/Zberač (dodávka stavby)	22	Tbt1: Snímač tepl. vyrovnávacej nádrže (dodávka stavby)
12	Zásobník na teplú úžitkovú vodu (dodávka stavby)	FHL 1n	Systém okruhu podlahového vykurovania (dodávka stavby)
12,1	Odvzdušňovací ventil	FCU 1n	Izbové klimatizačné jednotky (dodávka stavby)

Poznámky:

2. časť

Konštrukčné údaje

1 Špecifikácie	20
2 Elektrické údaje	21
3 Rozmery a ťažisko	21
4 Prehľad výkonov	22
5 Prevádzkové limity	
6 Výkon hydraulického systému	29
7 Hladiny hluku	30
8 Príslušenstvo	33

1 Špecifikácie

Názov modelu HOP			18WMONO3	30WMONO3				
Napájanie		V/Ph/Hz		380-41	5/3/50			
	Výkon	W	18000	22000	26000	30100		
Vykurovanie A7W35	Menovitý vstup	W	3830	5000	6373	7698		
	СОР		4,70	4,40	4,08	3,91		
	Výkon	W	18000	22000	26000	30000		
Vykurovanie A7W45	Menovitý vstup	W	5143	6471	8387	10345		
	СОР		3,50	3,40	3,10	2,90		
	Výkon	W	18000	22000	26000	30000		
Vykurovanie A7W55	Menovitý vstup	W	6545	8302	10612	13043		
	СОР		2,75	2,65	2,45	2,30		
	Výkon	W	18000	21000	22000	23000		
Vykurovanie A-7W35	Menovitý vstup	W	6667	8077	8800	9388		
	СОР		2,70	2,60	2,50	2,45		
	Výkon	W	18500	23000	27000	31000		
Chladenie A35W18	Menovitý vstup	W	3895	5000	6279	7750		
	EER		4,75	4,60	4,30	4,00		
	Výkon	W	17000	21000	26000	29500		
Chladenie A35W7	Menovitý vstup	W	5574	7119	9630	11569		
	EER		3,05	2,95	2,70	2,55		
Trieda sezónnej energetickej	Výstup vodu pri 25 °C/55 °C	Triodo	<u> </u>	<u> </u>	<u> </u>	A/A		
účinnosti vykurovania priestoru	vystup vody pri 35 °C/55 °C	Theua	A+++/A++	A+++/A++	A+++/A+	A++/A+		
	Tanlaičia nadnahia	35 ⁰C	5,73	5,93	5,85	5,40		
		55 °C	4,00	4,10	4,28	4,15		
SCOP	Mierne nednehie	35 ⁰C	4,60	4,53	4,50	4,20		
		55 °C	3,20	3,23	3,15	3,15		
	Chladneičie nodnebie	35 ⁰C	3,73	3,73	3,65	3,53		
		55 °C	2,50	2,63	2,60	2,58		
SEER	Výstup vody pri 7 °C/18 °C		4,70/5,48	4,70/5,67	4,66/5,88	4,49/5,71		
Kompresor		Тур		Dvojitý rotačný,	DC invertorový			
Motor vonkajšieho ventilátora		Тур		Bezuhlíkov	ý DC motor			
Výmenník tepla na strane vody				Тур š	átítka			
Vodné čerpadlo	Max. dopravná výška čerpadla	m	12	12	12	12		
Chladivo (R32)	Objem náplne	kg		5,	,0			
Typ škrtenia		1		Elektronický e	xpanzný ventil			
Hladina akustického výkonu ²		dB	71	73	75	77		
Menovitý prietok vody		m³/h	3,10	3,78	4,47	5,18		
Objem vody v jednotke		L	3,5	3,5 3,5 3,5				
Rozmery jednotky/rozmery balenia	(ŠxVxH)	mm	1	129×1558×528/	/1220×1735×56	5		
Hmotnosť netto/celková		kg		177/206				
Pripojovacie rozmery vodovodného	potrubia	palce	1-1/4" BSP	1-1/4" BSP				
Rozsah teplôt	Chladenie	°C		-5-	46			
vonkajšieho vzduchu	Vykurovanie	°C		-25	-35			

	TÚV	°C	-25-43
	Chladenie	°C	5-25
Rozsah nastavenia	Vykurovanie	٥C	25-60
τεριοτή νουγ	TÚV ³	٥C	30-60

Poznámky:

1. Príslušné smernice a nariadenia EÚ: EN14511; EN14825; EN50564; EN12102; (EÚ) č. 811/2013; (EÚ) č. 813/2013; OJ 2014/C 207/02.

2. Norma pre testovanie: EN12102-1

3. Maximálna teplota teplej úžitkovej vody 60°C sa dá dosiahnuť iba využitím TBH (výhrevná vložka v zásobníku TÚV).

2 Elektrické údaje

	V	onkajš	ia jednotka		1	Napájací prúc	1	Komp	resor	Ventilátor		
Systém	Napätie		Min.	Max.	MCA	TOCA	MFA	MSC	RLA	1444	FLA	
	(V)	п	(V)	(V)	(A)	(A)	(A)	(A)	(A)	KVV	(A)	
HOP18WMONO3	380~415 50		342	456	21	28	25	-	12	0,34	3	
HOP22WMONO3	380~415	50	342	456	24,5	28	25	-	14	0,34	3	
HOP26WMONO3	380~415	50	342	456	27	28	32	-	18	0,34	3	
HOP30WMONO3	380~415	50	342	456	28,5	28	32	-	21	0,34	3	

Poznámka:

MCA: Min. prúd v obvode (A)

TOCA: Celková hodnota nadprúdu (A)

MFA: Max. prúd poistky (A)

MSC: Max. prúd pri spustení (A)

RLA: Nominálny záťažový prúd (A)

Vstupný prúd kompresora, kde MAX. Hz môžu byť k dispozícii pre nominálne testovacie podmienky chladenia alebo vykurovania

kW: Nominálny výstup motora

FLA: Prúd pri plnom zaťažení (A)

3 Rozmery a ťažisko

Obrázok 2-2.1: HOP18(22,26,30)WMONO3, rozmery a ťažisko (jednotka: mm)

528 195

4 Prehľad výkonov

4.1 Prehľad výkonov pre vykurovanie (norma pre testovanie: EN14511)

Tabuľka 2-4.1: HOP18WMONO3, výkon vykurovania, špičkové hodnoty¹

										L	WT (°C)										
		30			35		40				45			50			55			60		
°C DB	B HC PI COP		COP	нс	PI	COP	нс	PI	COP	нс	PI	COP	нс	PI	COP							
-25.0	10191	6401	1.59	9069	6788	1.34																
-20,0	12939	6013	2,15	11515	6376	1,81	10091	6739	1,50													
-15,0	20078	7699	2,61	19027	8151	2,33	17841	9048	1,97	15171	9112	1,66	12715	9070	1,40							
-10	22882	8635	2,65	21871	8832	2,48	21232	9533	2,23	18785	9369	2,01	16482	9128	1,81	9437	8390	1,12	6282	5554	1,13	
-7,0	24296	8831	2,75	23577	9241	2,55	23266	9824	2,37	20360	9253	2,20	18743	9163	2,05	10735	8784	1,22	8565	7170	1,19	
-5,0	25871	8671	2,98	25235	9210	2,74	25038	9924	2,52	22679	9738	2,33	20410	9475	2,15	11858	8869	1,34	10173	8050	1,26	
-2,0	26720	7980	3,35	25246	8346	3,02	24294	8836	2,75	23360	9301	2,51	21178	9626	2,20	13926	9310	1,50	11838	8353	1,42	
0	24577	6937	3,54	24132	7502	3,22	23688	8068	2,94	23244	8633	2,69	21313	9386	2,27	17275	9037	1,91	14415	8998	1,60	
2	25962	6948	3,74	25494	7477	3,41	25026	8006	3,13	24558	8535	2,88	23848	9184	2,60	20623	8764	2,35	19015	9387	2,03	
5	20580	5005	4,11	19758	5333	3,70	18937	5662	3,34	18115	5990	3,02	17898	6718	2,66	17680	7446	2,37	17463	8373	2,09	
7,0	21884	5019	4,36	20738	5313	3,90	19593	5608	3,49	18447	5902	3,13	18424	6805	2,71	18401	7707	2,39	18378	8610	2,13	
10	21824	4923	4,43	20654	5071	4,07	19484	5220	3,73	18314	5368	3,41	18238	6070	3,00	18162	6771	2,68	18087	7473	2,42	
15,0	23370	5157	4,53	22078	5109	4,32	20786	5061	4,11	20886	5372	3,89	19338	5484	3,53	19182	5954	3,22	19026	6424	2,96	
20,0	25031	5384	4,65	23779	5329	4,46	22527	5273	4,27	21275	5217	4,08	20829	5569	3,74	20382	5921	3,44	19935	6273	3,18	
25,0	24785	5211	4,76	23660	5152	4,59	22535	5093	4,43	21410	5033	4,25	20725	5250	3,95	20040	5468	3,67	19355	5685	3,40	
30,0	26328	5423	4,85	25240	5356	4,71	24153	5289	4,57	23065	5222	4,42	22110	5330	4,15	21154	5437	3,89	20199	5545	3,64	
35,0	12774	1712	7,46	12484	1898	6,58	12195	2085	5,85	11905	2271	5,24	11516	2596	4,44	11127	2920	3,81				

Skratky:

LWT: Teplota vody na výstupe (°C)

HC: Celkový výkon vykurovania (W)

PI: Vstupný výkon (W)

Poznámky:

1. Hodnoty špičkového výkonu vykurovania neberú do úvahy pokles výkonu, ktorý vznikne pri nahromadení námrazy a počas rozmrazovania.

Tabuľka 2-4.2: HOP18WMONO3, v	výkon vykurovania,	integrované hodnoty ¹
-------------------------------	--------------------	----------------------------------

										L	WT (°C)									
	30			35				40			45		50			55			60		
°C DB	HC	PI	COP	HC	PI	COP	HC	PI	СОР	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	СОР
-25,0	8684	6028	1,44	7841	6518	1,20															
-20,0	11025	5663	1,95	9955	6123	1,63	8885	6583	1,35												
-15,0	15468	6961	2,22	14693	6973	2,11	14167	8250	1,72	12439	8742	1,42	10822	9073	1,19						
-10	18972	7639	2,48	17951	7874	2,28	17232	8595	2,00	15056	8533	1,76	13026	8388	1,55	9165	8350	1,10	6100	5826	1,05
-7,0	21075	8180	2,58	19906	8414	2,37	19071	8803	2,17	16156	8169	1,98	14349	7978	1,80	10075	8515	1,18	8038	7435	1,08
-5,0	22146	7943	2,79	20955	8275	2,53	20117	8760	2,30	17578	8459	2,08	15209	8110	1,88	10946	8535	1,28	9390	8035	1,17
-2,0	22479	7183	3,13	20516	7346	2,79	19021	7627	2,49	17570	7892	2,23	16322	8364	1,95	12613	8870	1,42	10722	8815	1,22
0	19933	6025	3,31	19367	6511	2,97	18800	6998	2,69	18234	7484	2,44	17629	8545	2,06	15174	8562	1,77	13564	8812	1,54
2	20355	5816	3,50	20228	6397	3,16	20101	6979	2,88	19974	7560	2,64	19936	8410	2,37	17735	8254	2,15	16838	8572	1,96
5	20220	4928	4,10	19080	5189	3,68	17940	5450	3,29	16800	5711	2,94	16775	6496	2,58	16750	7282	2,30	16726	8067	2,07
7,0	21884	5019	4,36	20738	5313	3,90	19593	5608	3,49	18447	5902	3,13	18424	6805	2,71	18401	7707	2,39	18378	8610	2,13
10	21824	4923	4,43	20654	5071	4,07	19484	5220	3,73	18314	5368	3,41	18238	6070	3,00	18162	6771	2,68	18087	7473	2,42
15,0	23370	5157	4,53	22078	5109	4,32	20786	5061	4,11	20886	5372	3,89	19338	5484	3,53	19182	5954	3,22	19026	6424	2,96
20,0	25031	5384	4,65	23779	5329	4,46	22527	5273	4,27	21275	5217	4,08	20829	5569	3,74	20382	5921	3,44	19935	6273	3,18
25,0	24785	5211	4,76	23660	5152	4,59	22535	5093	4,43	21410	5033	4,25	20725	5250	3,95	20040	5468	3,67	19355	5685	3,40
30,0	26328	5423	4,85	25240	5356	4,71	24153	5289	4,57	23065	5222	4,42	22110	5330	4,15	21154	5437	3,89	20199	5545	3,64
35,0	12774	1712	7,46	12484	1898	6,58	12195	2085	5,85	11905	2271	5,24	11516	2596	4,44	11127	2920	3,81			

Skratky:

LWT: Teplota vody na výstupe (°C)

HC: Celkový výkon vykurovania (W)

PI: Vstupný výkon (W)

Poznámky:

Tabuľka 2-4.3: HOP22WMONO3, výkon vykurovania, špičkové hodnoty¹

										L	WT (°C										
		30			35			40			45			50			55			60	
°C DB	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP
-25,0	10174	6756	1,51	9123	7154	1,28															
-20,0	12899	6067	2,13	11566	6424	1,80	10234	6782	1,51												
-15,0	20342	7021	2,90	19112	8206	2,33	17973	9705	1,85	16782	11251	1,49	14704	11423	1,29						
-10	22770	7972	2,86	22000	8861	2,48	21609	9866	2,19	21191	10901	1,94	18987	10952	1,73	12202	10922	1,12	8529	7893	1,08
-7,0	24093	8271	2,91	23733	9254	2,56	23791	9963	2,39	23836	10691	2,23	21846	10470	2,09	13558	10441	1,30	9946	8124	1,22
-5,0	25944	8376	3,10	25423	9289	2,74	25347	10043	2,52	25252	10817	2,33	23008	10627	2,16	15564	10743	1,45	12091	9304	1,30
-2,0	28722	8702	3,30	27958	9343	2,99	27680	10163	2,72	27375	11005	2,49	23397	10626	2,20	18573	11196	1,66	14958	11305	1,32
0	28274	8037	3,52	27530	8709	3,16	26787	9382	2,86	26043	10054	2,59	24722	10978	2,25	21601	10987	1,97	19108	11100	1,72
2	29878	7993	3,74	29100	8743	3,33	28321	9492	2,98	27542	10242	2,69	27112	10959	2,47	24629	10778	2,29	22717	11224	2,02
5	24792	6189	4,01	23920	6684	3,58	23049	7178	3,21	22177	7673	2,89	21966	8497	2,59	21754	9321	2,33	21543	10344	2,08
7,0	25997	6215	4,18	24925	6468	3,85	23891	7096	3,37	22657	7511	3,02	22706	8542	2,66	22775	9089	2,51	22443	10552	2,13
10	25467	5928	4,30	24549	6290	3,90	23631	6652	3,55	22713	7015	3,24	22316	7676	2,91	21919	8337	2,63	21521	8999	2,39
15,0	28916	6484	4,46	28048	6789	4,13	27180	7095	3,83	26312	7401	3,56	25450	7657	3,32	24588	7913	3,11	23726	8169	2,90
20,0	28642	6171	4,64	27752	6407	4,33	26862	6644	4,04	25972	6881	3,77	24963	7064	3,53	23953	7248	3,30	22944	7431	3,09
25,0	28913	6010	4,81	27988	6192	4,52	27063	6373	4,25	26138	6555	3,99	24984	6679	3,74	23830	6803	3,50	22676	6928	3,27
30,0	30920	6224	4,97	29906	6364	4,70	28892	6505	4,44	27878	6645	4,20	26518	6722	3,95	25158	6798	3,70	23799	6875	3,46
35,0	12748	1735	7,35	12458	1923	6,48	12167	2110	5,77	11877	2298	5,17	11536	2619	4,41	11196	2940	3,81			

Skratky:

LWT: Teplota vody na výstupe (°C)

HC: Celkový výkon vykurovania (W)

PI: Vstupný výkon (W)

Poznámky:

1...Hodnoty integrovaného výkonu vykurovania berú do úvahy pokles výkonu, ktorý vznikne pri nahromadení námrazy a počas rozmrazovania.

Tabulka 2-4.4: HOP22WMONO3	výkon	vykurovania,	integrované	hodnoty1
----------------------------	-------	--------------	-------------	----------

							-				.WT (°C	.)									
		30			35			40			45			50			55			60	
°C DB	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP
-25,0	8726	6366	1,37	8064	6892	1,17															
-20,0	11062	5716	1,94	10223	6188	1,65	9383	6660	1,41												
-15,0	16554	6653	2,49	15913	7348	2,17	14860	9099	1,63	13761	10907	1,26	12571	11272	1,12						
-10	20427	8048	2,54	19266	8196	2,35	18429	9176	2,01	17550	10186	1,72	15221	10274	1,48	10648	10010	1,06	7442	7234	1,03
-7,0	22348	8404	2,66	21279	8704	2,44	20570	9223	2,23	19824	9754	2,03	17426	9425	1,85	12547	10034	1,25	9204	7904	1,16
-5,0	23094	8219	2,81	22113	8611	2,57	21508	9221	2,33	20869	9847	2,12	18483	9601	1,93	13813	10050	1,37	10731	8985	1,19
-2,0	24215	8052	3,01	23364	8471	2,76	22915	9219	2,49	22435	9988	2,25	18925	9595	1,97	15713	10074	1,56	13392	10067	1,33
0	22920	7140	3,21	22469	7779	2,89	22018	8417	2,62	21568	9056	2,38	20738	9947	2,08	18377	10003	1,84	16511	10149	1,63
2	23355	6959	3,36	23244	7692	3,02	23132	8425	2,75	23021	9157	2,51	22908	9959	2,30	21042	9933	2,12	19629	10005	1,96
5	23541	6021	3,91	22623	6460	3,50	21704	6900	3,15	20786	7340	2,83	20672	8189	2,52	20559	9039	2,27	20445	9889	2,07
7,0	25997	6215	4,18	24925	6468	3,85	23891	7096	3,37	22657	7511	3,02	22706	8542	2,66	22775	9089	2,51	22443	10552	2,13
10	25467	5928	4,30	24549	6290	3,90	23631	6652	3,55	22713	7015	3,24	22316	7676	2,91	21919	8337	2,63	21521	8999	2,39
15,0	28916	6484	4,46	28048	6789	4,13	27180	7095	3,83	26312	7401	3,56	25450	7657	3,32	24588	7913	3,11	23726	8169	2,90
20,0	28642	6171	4,64	27752	6407	4,33	26862	6644	4,04	25972	6881	3,77	24963	7064	3,53	23953	7248	3,30	22944	7431	3,09
25,0	28913	6010	4,81	27988	6192	4,52	27063	6373	4,25	26138	6555	3,99	24984	6679	3,74	23830	6803	3,50	22676	6928	3,27
30,0	30920	6224	4,97	29906	6364	4,70	28892	6505	4,44	27878	6645	4,20	26518	6722	3,95	25158	6798	3,70	23799	6875	3,46
35.0	12748	1735	7.35	12458	1923	6.48	12167	2110	5.77	11877	2298	5.17	11536	2619	4.41	11196	2940	3.81			

Skratky:

LWT: Teplota vody na výstupe(°C)

HC: Celkový výkon vykurovania (W) PI: Vstupný výkon (W)

Poznámky:

Tabuľka 2-4.5: HOP26WMONO3, výkon vykurovania, špičkové hodnoty¹

										L	.wi (°C)									
		30			35			40			45			50			55			60	
°C DB	HC	PI	СОР	нс	PI	COP	нс	PI	СОР	нс	PI	СОР	НС	PI	СОР	нс	PI	COP	HC	PI	СОР
-25,0	10157	7112	1,43	9177	7521	1,22															
-20,0	12858	6120	2,10	11617	6472	1,79	10376	6824	1,52												
-15,0	20606	6342	3,25	19196	8261	2,32	18104	10362	1,75	16961	12531	1,35	16535	13802	1,20						
-10	22658	7758	2,92	22130	8889	2,49	21987	10200	2,16	21825	11550	1,89	21277	12722	1,67	12658	11004	1,15	9889	8909	1,11
-7,0	23890	8607	2,78	24743	9597	2,58	24316	10102	2,41	24743	10962	2,26	24743	11645	2,12	16704	12198	1,37	12590	10175	1,24
-5,0	26018	8754	2,97	25612	9369	2,73	25656	10162	2,52	25685	10977	2,34	25265	11614	2,18	19042	12259	1,55	14431	10380	1,39
-2,0	29211	8974	3,26	28195	9523	2,96	27665	10252	2,70	27099	11000	2,46	26142	11863	2,20	23013	12689	1,81	21303	14295	1,49
0	30979	8866	3,49	29918	9625	3,11	29372	10571	2,78	28788	11543	2,49	28276	12655	2,23	25372	12580	2,02	23965	13083	1,83
2	32747	8757	3,74	31640	10400	3,04	31078	10890	2,85	30476	12086	2,52	30411	12867	2,36	27207	12236	2,22	25583	12690	2,02
5	28950	7415	3,90	28072	8110	3,46	27194	8805	3,09	26316	9501	2,77	26129	10400	2,51	28150	12261	2,30	25755	12399	2,08
7,0	29927	7459	4,01	29083	8074	3,60	28240	8690	3,25	27396	9305	2,94	27120	10382	2,61	26843	11459	2,34	24306	11469	2,12
10	28870	6938	4,16	28366	7576	3,74	27863	8214	3,39	27359	8852	3,09	26538	9413	2,82	25717	9974	2,58	24895	10536	2,36
15,0	32415	7394	4,38	30789	7789	3,95	30707	8536	3,60	30624	9283	3,30	28930	9180	3,15	26556	8851	3,00	24905	8751	2,85
20,0	32835	7086	4,63	32475	7723	4,21	30468	7931	3,84	30126	8535	3,53	28453	8482	3,35	26780	8428	3,18	25107	8375	3,00
25,0	33747	6931	4,87	33140	7449	4,45	32533	7966	4,08	31926	8484	3,76	30146	8472	3,56	28366	8460	3,35	26586	8448	3,15
30,0	35360	6947	5,09	34511	7366	4,69	33662	7785	4,32	33725	8432	4,00	31839	8462	3,76	29952	8491	3,53	28066	8521	3,29
35,0	12722	1759	7,23	12431	1947	6,38	12140	2136	5,68	11849	2324	5,10	11557	2642	4,37	11264	2959	3,81			

Skratky:

LWT: Teplota vody na výstupe (°C)

HC: Celkový výkon vykurovania (W)

PI: Vstupný výkon (W)

Poznámky:

1. Hodnoty špičkového výkonu vykurovania neberú do úvahy pokles výkonu, ktorý vznikne pri nahromadení námrazy a počas rozmrazovania.

Tabuľka 2-4.6: HOP26WMONO3, výkon vykurovania, integrované hodnoty¹

										L	.WT (°C)									
		30	-		35	-		40			45			50			55			60	
°C DB	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP
-25,0	8768	6704	1,31	8286	7266	1,14															
-20,0	11099	5769	1,92	10490	6253	1,68	9881	6737	1,47												
-15,0	17641	6344	2,78	17133	7723	2,22	15554	9948	1,56	13909	12247	1,14	13613	12772	1,07						
-10	21882	8010	2,73	20582	8518	2,42	19626	9757	2,01	18624	11035	1,69	17278	12141	1,42	13199	12016	1,10	10311	9728	1,06
-7,0	23620	8628	2,74	23460	9316	2,52	22069	9642	2,29	21453	10307	2,08	20450	10803	1,89	15277	11629	1,31	11515	9701	1,19
-5,0	24043	8494	2,83	23270	8947	2,60	22900	9682	2,37	22501	10438	2,16	21701	11024	1,97	16354	11161	1,47	12392	9986	1,24
-2,0	24677	8515	2,90	24199	8875	2,73	24145	9742	2,48	24074	10634	2,26	22101	11100	1,99	18394	10781	1,71	15966	10988	1,45
0	25100	8045	3,12	24819	8828	2,81	24975	9782	2,55	25122	10765	2,33	24034	11414	2,11	20968	11023	1,90	19220	11177	1,72
2	25523	7910	3,23	25438	8780	2,90	25806	9822	2,63	26170	10896	2,40	25967	11612	2,24	23098	11052	2,09	21594	11019	1,96
5	26524	7131	3,72	25990	7792	3,34	25455	8453	3,01	24920	9115	2,73	24688	9993	2,47	24457	10871	2,25	24225	11749	2,06
7,0	29927	7459	4,01	29083	8074	3,60	28240	8690	3,25	27396	9305	2,94	27120	10382	2,61	26843	11459	2,34	24306	11469	2,12
10	28870	6938	4,16	28366	7576	3,74	27863	8214	3,39	27359	8852	3,09	26538	9413	2,82	25717	9974	2,58	24895	10536	2,36
15,0	32415	7394	4,38	30789	7789	3,95	30707	8536	3,60	30624	9283	3,30	28930	9180	3,15	26556	8851	3,00	24905	8751	2,85
20,0	32835	7086	4,63	32475	7723	4,21	30468	7931	3,84	30126	8535	3,53	28453	8482	3,35	26780	8428	3,18	25107	8375	3,00
25,0	33747	6931	4,87	33140	7449	4,45	32533	7966	4,08	31926	8484	3,76	30146	8472	3,56	28366	8460	3,35	26586	8448	3,15
30,0	35360	6947	5,09	34511	7366	4,69	33662	7785	4,32	33725	8432	4,00	31839	8462	3,76	29952	8491	3,53	28066	8521	3,29
35,0	12722	1759	7,23	12431	1947	6,38	12140	2136	5,68	11849	2324	5,10	11557	2642	4,37	11264	2959	3,81			

Skratky:

LWT: Teplota vody na výstupe (°C)

HC: Celkový výkon vykurovania (W)

PI: Vstupný výkon (W)

Poznámky:

Tabuľka 2-4.7: HOP30WMONO3, výkon vykurovania, špičkové hodnoty¹

										L	.WT (°C)									
		30			35			40			45			50			55			60	
°C DB	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	СОР
-25,0	10495	7989	1,31	9553	8439	1,13															
-20,0	13266	6606	2,01	12076	6976	1,73	10887	7347	1,48												
-15,0	21600	6060	3,56	19955	8898	2,24	18873	11790	1,60	17740	14777	1,20	17283	16036	1,08						
-10	23336	7831	2,98	23038	9542	2,41	23147	11270	2,05	23245	13053	1,78	22937	14639	1,57	14692	13080	1,12	11046	9807	1,13
-7,0	24516	9090	2,70	24888	9928	2,51	25711	10959	2,35	26547	12019	2,21	26933	12887	2,09	22278	14100	1,58	16470	12795	1,29
-5,0	27005	9411	2,87	26704	10109	2,64	26874	11001	2,44	27033	11917	2,27	26721	12641	2,11	23263	14564	1,60	19236	12538	1,53
-2,0	30739	9892	3,11	29428	10381	2,83	28618	11064	2,59	27762	11765	2,36	27612	12944	2,13	27907	14716	1,90	27664	17438	1,59
0	32612	9711	3,36	31244	10562	2,96	30409	11617	2,62	29526	12703	2,32	29993	13980	2,15	29409	14730	2,00	28335	14653	1,93
2	33318	8907	3,74	31942	9481	3,37	31111	11374	2,74	30700	12748	2,41	30582	13511	2,26	29866	13781	2,17	28047	13980	2,01
5	31830	8363	3,81	31020	9257	3,35	30791	10348	2,98	30532	11310	2,70	30387	12427	2,45	29919	13651	2,19	28984	14005	2,07
7,0	31177	8100	3,85	31754	9509	3,34	30825	9810	3,14	30992	11268	2,75	31077	12097	2,57	30563	13819	2,21	27332	12943	2,11
10	30030	7459	4,03	30099	8373	3,59	30837	9493	3,25	31579	10654	2,96	30903	11281	2,74	30172	11925	2,53	27033	11579	2,33
15,0	31835	7396	4,30	32695	8637	3,79	34334	10108	3,40	36014	11636	3,09	34020	11332	3,00	32585	11237	2,90	27197	9762	2,79
20,0	32636	7055	4,63	32977	8075	4,08	34150	9322	3,66	35340	10620	3,33	33608	10510	3,20	32477	10618	3,06	27137	9328	2,91
25,0	33876	6869	4,93	33763	7710	4,38	34535	8776	3,94	35302	9885	3,57	33766	9942	3,40	32877	10226	3,22	27519	9093	3,03
30,0	36747	7036	5,22	36198	7749	4,67	36587	8684	4,21	36947	9657	3,83	35488	9862	3,60	34721	10306	3,37	29225	9313	3,14
35,0	12696	1782	7,12	12405	1972	6,29	12113	2161	5,61	11821	2351	5,03	11577	2665	4,34	11333	2979	3,80			

Skratky:

LWT: Teplota vody na výstupe (°C)

HC: Celkový výkon vykurovania (W)

PI: Vstupný výkon (W)

Poznámky:

1. Hodnoty integrovaného výkonu vykurovania berú do úvahy pokles výkonu, ktorý vznikne pri nahromadení námrazy a počas rozmrazovania.

Tabuľka 2-4.8: HOP30WMONO3, výkon vykurovania, integrované hodnoty¹

										L	.WT (°C)									
								40			45										
		30	-		35			40			45			50			55			60	
°C DB	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP	HC	PI	COP
-25,0	8886	7322	1,21	8680	8019	1,08															
-20,0	11249	6302	1,79	10773	6901	1,56	10288	7500	1,37												
-15,0	17880	6930	2,58	17595	8523	2,06	16194	11075	1,46	14691	13737	1,07	14318	13687	1,05						
-10	22178	8749	2,53	21136	9400	2,25	20434	10862	1,88	19671	12377	1,59	18172	13423	1,35	14290	13635	1,05	10381	10223	1,02
-7,0	23940	9425	2,54	23261	9927	2,34	22977	10735	2,14	22659	11561	1,96	21508	11943	1,80	16540	13786	1,20	12228	11043	1,11
-5,0	24368	9278	2,63	23897	9874	2,42	23842	10779	2,21	23766	11708	2,03	22825	12188	1,87	18040	13480	1,34	13933	11348	1,23
-2,0	25011	9301	2,69	24851	9795	2,54	25138	10846	2,32	25427	11928	2,13	23246	12272	1,89	19934	12793	1,56	17952	12818	1,40
0	25440	8787	2,90	25487	9742	2,62	26003	10891	2,39	26534	12075	2,20	25278	12619	2,00	22724	13080	1,74	21611	13039	1,66
2	24994	8075	3,10	26021	9085	2,86	25959	10220	2,54	28191	12317	2,29	26388	11998	2,20	24651	12493	1,97	23085	11821	1,95
5	28738	8054	3,57	28531	8892	3,21	28875	9918	2,91	29219	10978	2,66	28825	11863	2,43	27846	13110	2,12	27000	13141	2,05
7,0	31177	8100	3,85	31754	9509	3,34	30825	9810	3,14	30992	11268	2,75	31077	12097	2,57	30563	13819	2,21	27332	12943	2,11
10	30030	7459	4,03	30099	8373	3,59	30837	9493	3,25	31579	10654	2,96	30903	11281	2,74	30172	11925	2,53	27033	11579	2,33
15,0	31835	7396	4,30	32695	8637	3,79	34334	10108	3,40	36014	11636	3,09	34020	11332	3,00	32585	11237	2,90	27197	9762	2,79
20,0	32636	7055	4,63	32977	8075	4,08	34150	9322	3,66	35340	10620	3,33	33608	10510	3,20	32477	10618	3,06	27137	9328	2,91
25,0	33876	6869	4,93	33763	7710	4,38	34535	8776	3,94	35302	9885	3,57	33766	9942	3,40	32877	10226	3,22	27519	9093	3,03
30,0	36747	7036	5,22	36198	7749	4,67	36587	8684	4,21	36947	9657	3,83	35488	9862	3,60	34721	10306	3,37	29225	9313	3,14
35,0	12696	1782	7,12	12405	1972	6,29	12113	2161	5,61	11821	2351	5,03	11577	2665	4,34	11333	2979	3,80			

Skratky:

LWT: Teplota vody na výstupe (°C)

HC: Celkový výkon vykurovania (W)

PI: Vstupný výkon (W)

Poznámky:

4.2 Prehľad výkonov pre chladenie (norma pre testovanie: EN14511)

Tabuľka 2-4.9: HOP18WMONO3, výkon chladenia

											L	.WT (°C)											
		25			22			18			15			13			10			7			5	
°C DB	CC	PI	EER	CC	PI	EER	СС	PI	EER	CC	PI	EER	CC	PI	EER	CC	PI	EER	CC	PI	EER	CC	PI	EER
45	23005	5857	3,93	20981	5876	3,57	18282	5902	3,10	18000	6556	2,75	17038	6782	2,51	15520	6811	2,28	12938	6417	2,02	11216	6154	1,82
40	24236	5049	4,80	22408	5197	4,31	19972	5396	3,70	20088	6139	3,27	19344	6451	3,00	17784	6527	2,72	15016	6200	2,42	13170	5981	2,20
35	25466	4240	6,01	23836	4519	5,27	21661	4890	4,43	22176	5722	3,88	21649	6119	3,54	20048	6242	3,21	17093	5982	2,86	15123	5809	2,60
30	27199	3660	7,43	25360	3892	6,52	22907	4201	5,45	23324	4908	4,75	22675	5244	4,32	21450	5463	3,93	18808	5355	3,51	17047	5283	3,23
25	24799	2640	9,39	23043	2799	8,23	20702	3011	6,88	20525	3434	5,98	20738	3822	5,43	20836	4271	4,88	18712	4311	4,34	17296	4338	3,99
20	21499	2298	9,36	20033	2380	8,42	18080	2489	7,26	18196	2815	6,46	19360	3250	5,96	18221	3480	5,24	16337	3585	4,56	15081	3655	4,13
15	18256	1960	9,32	17061	1980	8,61	15467	2008	7,70	15858	2255	7,03	16470	2497	6,60	16373	2752	5,95	14780	2780	5,32	13717	2798	4,90
10	16075	1733	9,28	15066	1708	8,82	13722	1674	8,20	14303	1855	7,71	15052	2040	7,38	15171	2209	6,87						
5	14841	1446	10,26	13820	1436	9,62	12458	1423	8,76	11436	1413	8,10	13060	1707	7,65	13211	1894	6,97						
0	21194	1868	11,34	19619	1871	10,49	17519	1874	9,35	15944	1876	8,50	14894	1878	7,93	13319	1880	7,08						
-5	18573	3347	5,55	17370	3155	5,51	15767	2899	5,44	14565	2707	5,38	13763	2579	5,34	12561	2387	5,26						

Skratky:

LWT: Teplota vody na výstupe (°C)

CC: Celkový výkon chladenia (W)

PI: Vstupný výkon (W)

Tabuľka 2-4.10: HOP22WMONO3, výkon chladenia

												LWT	(°C)											
		25			22			18			15			13			10			7			5	
°C DB	CC	PI	EER																					
45	24059	5909	4,07	21857	5984	3,65	18920	6083	3,11	20753	7644	2,72	19982	8133	2,46	18394	8281	2,22	15755	8000	1,97	13996	7813	1,79
40	25547	5289	4,83	23508	5498	4,28	20790	5775	3,60	23278	7428	3,13	22791	8022	2,84	21085	8083	2,61	18179	7722	2,35	16242	7481	2,17
35	31695	5475	5,79	29498	5876	5,02	26568	6410	4,14	25804	7212	3,58	25600	7911	3,24	23775	7886	3,01	20873	7120	2,93	18938	6609	2,87
30	32805	4833	6,79	30457	5113	5,96	27325	5487	4,98	26491	6117	4,33	26249	6675	3,93	24797	6818	3,64	21925	6599	3,32	20011	6453	3,10
25	29567	3694	8,01	27392	3839	7,14	24491	4032	6,07	24706	4625	5,34	23846	4885	4,88	23026	5184	4,44	20716	5179	4,00	19176	5175	3,71
20	26423	3223	8,20	25189	3389	7,43	23542	3609	6,52	21581	3677	5,87	21775	3998	5,45	21025	4352	4,83	18773	4429	4,24	17272	4481	3,85
15	21288	2537	8,39	21105	2718	7,76	20861	2960	7,05	19239	2957	6,51	19671	3200	6,15	19292	3442	5,60	17399	3437	5,06	16138	3434	4,70
10	18223	2153	8,46	17097	2102	8,13	15597	2034	7,67	16079	2204	7,30	16770	2383	7,04	16794	2531	6,63						
5	14462	1734	8,34	13538	1686	8,03	12306	1622	7,59	13820	1911	7,23	14610	2093	6,98	14762	2241	6,59						
0	22126	2691	8,22	20667	2606	7,93	18721	2493	7,51	17261	2408	7,17	16288	2352	6,93	14829	2267	6,54						
-5	18833	3765	5,00	17543	3550	4,94	15824	3264	4,85	14535	3049	4,77	13675	2906	4,71	12386	2691	4,60						

LWT: Teplota vody na výstupe(°C)

CC: Celkový výkon chladenia (W)

PI: Vstupný výkon (W)

Tabuľka 2-4.11: HOP26WMONO3, výkon chladenia

												LW.	т (°С)											
		25			22			18			15			13			10			7			5	
°C DB	CC	PI	EER	CC	PI	EER	CC	PI	EER	CC	PI	EER	CC	PI	EER	CC	PI	EER	CC	PI	EER	СС	PI	EER
45	24292	5752	4,22	21983	5881	3,74	18905	6053	3,12	20603	7674	2,68	18692	7781	2,40	18066	8335	2,17	15882	8240	1,93	14426	8177	1,76
40	25992	5350	4,86	23808	5612	4,24	20896	5962	3,51	27746	9229	3,01	25587	9488	2,70	24434	9762	2,50	21497	9373	2,29	19538	9114	2,14
35	35332	6312	5,60	32705	6817	4,80	29201	7490	3,90	32319	9723	3,32	31530	10583	2,98	29357	10325	2,84	25843	9616	2,69	23500	9144	2,57
30	40671	6489	6,27	37606	6836	5,50	33520	7300	4,59	33500	8412	3,98	32673	9061	3,61	30755	9069	3,39	27417	8684	3,16	25192	8426	2,99
25	40988	5845	7,01	37863	5988	6,32	33697	6177	5,46	32181	6652	4,84	31488	7089	4,44	30023	7356	4,08	27059	7285	3,71	25083	7238	3,47
20	32833	4532	7,24	30492	4567	6,68	27372	4614	5,93	26646	4949	5,38	26499	5275	5,02	25220	5619	4,49	22426	5661	3,96	20564	5688	3,62
15	27030	3603	7,50	25242	3565	7,08	22858	3513	6,51	22690	3742	6,06	23700	4113	5,76	22264	4198	5,30	20063	4151	4,83	18596	4119	4,51
10	24482	3143	7,79	22993	3045	7,55	21008	2914	7,21	21146	3051	6,93	21614	3209	6,74	22006	3426	6,42						
5	18107	2600	6,96	17044	2489	6,85	15626	2342	6,67	16181	2479	6,53	16932	2637	6,42	17054	2729	6,25						
0	23803	3790	6,28	22456	3593	6,25	20661	3331	6,20	19315	3134	6,16	18417	3003	6,13	17071	2806	6,08						
-5	27668	2661	10,40	25774	2590	9,95	23248	2496	9,31	21354	2425	8,80	20091	2378	8,45	18197	2307	7,89						

Skratky:

LWT: Teplota vody na výstupe (°C) CC: Celkový výkon chladenia (W)

PI: Vstupný výkon (W)

Tabuľka 2-4.11: HOP30WMONO3,	, v	ýkon chladenia
------------------------------	-----	----------------

												LW	T (°C)											
		25			22			18			15			13			10			7			5	
°C DB	СС	PI	EER	CC	PI	EER	CC	PI	EER	CC	PI	EER	СС	PI	EER	CC	PI	EER	СС	PI	EER	CC	PI	EER
45	24524	5595	4,38	22109	5778	3,83	18890	6023	3,14	20452	7705	2,65	18454	7857	2,35	18197	8596	2,12	16403	8680	1,89	15206	8736	1,74
40	26438	5410	4,89	24108	5726	4,21	21002	6148	3,42	27686	9586	2,89	25383	9898	2,56	24621	10227	2,41	22087	9866	2,24	20399	9625	2,12
35	34379	6180	5,56	33308	7240	4,60	31881	8653	3,68	35981	11591	3,10	33401	12107	2,76	30194	11214	2,69	29736	12705	2,34	29431	13699	2,15
30	41579	7118	5,84	38295	7474	5,12	33917	7949	4,27	38293	10380	3,69	35557	10677	3,33	35512	11169	3,18	31911	10593	3,01	29511	10210	2,89
25	44052	7030	6,27	40581	7121	5,70	35954	7244	4,96	36544	8253	4,43	35450	8692	4,08	33685	8912	3,78	30412	8762	3,47	28230	8662	3,26
20	38765	5925	6,54	35944	5916	6,08	32183	5904	5,45	30993	6223	4,98	30535	6544	4,67	30825	7350	4,19	25479	6850	3,72	21915	6516	3,36
15	32622	4756	6,86	30453	4670	6,52	27561	4554	6,05	26212	4612	5,68	26264	4837	5,43	25291	5020	5,04	22772	4920	4,63	21093	4853	4,35
10	28779	3984	7,22	27055	3834	7,06	24757	3635	6,81	25502	3859	6,61	25011	3869	6,46	24481	3929	6,23						
5	19577	3160	6,20	18535	3123	5,94	17145	2887	5,94	17712	2981	5,94	18488	3110	5,94	18674	3139	5,95						
0	24178	4426	5,46	23068	4559	5,06	21587	4131	5,23	20477	3809	5,38	19737	3595	5,49	18627	3273	5,69						
-5	28578	4067	7,03	26544	3815	6,96	23832	3478	6,85	21798	3225	6,76	20442	3057	6,69	18408	2804	6,56						

Skratky:

LWT: Teplota vody na výstupe (°C)

CC: Celkový výkon chladenia (W)

PI: Vstupný výkon (W)

5 Prevádzkové limity

Obrázok 2-5.1: Prevádzkové limity vykurovania

Obrázok 2-5.2: Prevádzkové limity chladenia

Obrázok 2-5.3: Prevádzkové limity teplej úžitkovej vody

Poznámky:

- Vyznačené oblasti znamenajú, že tepelné čerpadlo nepracuje, iba IBH alebo AHS.
- Z Vyznačené oblasti znamenajú interval poklesu alebo nárastu teploty toku vody.

Vyznačené oblasti znamenajú: Ak je nastavenie IBH/AHS platné, zapne sa iba IBH/AHS. Ak nie je nastavenie IBH/AHS platné, zapne sa iba tepelné čerpadlo.

6 Výkon hydraulického systému

Obrázok 2-6.1: HOP18(22,26,30)WMONO3, výkon hydraulického systému¹

Dostupný externý statický tlak, rýchlosť prietoku VS

Skratky: ESP: vonkajší statický tlak

Poznámky:

1. Označenie I, II a III znamená rýchlosť vodného čerpadla:

I: nízka,

II: stredná,

III: vysoká.

7 Hladiny hluku

7.1 Všeobecne

Tabuľka 2-7.1: Hladiny akustického tlaku¹

Názov modelu	dB(A) ²
HOP18WMONO3	57,6
HOP22WMONO3	59,8
HOP26WMONO3	61,5
HOP30WMONO3	63,5

Poznámky:

 Hladina akustického tlaku sa meria vo vzdialenosti 1 meter pred jednotkou a (1+V)/2 m (pričom V je výška jednotky) nad podlahou v semi-anechoickej komore. Pri prevádzke in-situ môžu byť hladiny akustického tlaku vyššie v dôsledku okolitého hluku.

 Hodnota dB(A) je maximálna testovaná hodnota získaná pri nasledujúcich podmienkach: Teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 30 °C, LWT 35 °C. Teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 47 °C, LWT 55 °C.

7.2 Hladiny v oktávových pásmach

Obrázok 2-7.2: HOP18WMONO3, hladiny v oktávových pásmach

Stredná frekvencia oktávového pásma (Hz)

Obrázok 2-7.3: HOP22WMONO3, hladiny v oktávových pásmach

Stredná frekvencia oktávového pásma (Hz)

teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 30 °C, LWT 35 °C

teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 40 °C, LWT 45 °C

teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 47 °C, LWT 55 °C

teplota vonkajšieho vzduchu 35 °C DB; EWT 12 °C, LWT 7 °C

teplota vonkajšieho vzduchu 35 °C DB; EWT 23 °C, LWT 18 °C

teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 30 °C, LWT 35 °C

teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 40 °C, LWT 45 °C

teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 47 °C, LWT 55 °C

teplota vonkajšieho vzduchu 35 °C DB; EWT 12 °C, LWT 7 °C

teplota vonkajšieho vzduchu 35 °C DB; EWT 23 °C, LWT 18 °C

Obrázok 2-7.4: HOP26WMONO3, hladiny v oktávových pásmach

Stredná frekvencia oktávového pásma (Hz)

Obrázok 2-7.5: HOP30WMONO3, hladiny v oktávových pásmach

Stredná frekvencia oktávového pásma (Hz)

teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 30 °C, LWT 35 °C

teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 40 °C, LWT 45 °C

teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 47 °C, LWT 55 °C

teplota vonkajšieho vzduchu 35 °C DB; EWT 12 °C, LWT 7 °C

teplota vonkajšieho vzduchu 35 °C DB; EWT 23 °C, LWT 18 °C

teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 30 °C, LWT 35 °C

teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 40 °C, LWT 45 °C

teplota vonkajšieho vzduchu 7 °C DB, 85 % rel. vlh.; EWT 47 °C, LWT 55 °C

teplota vonkajšieho vzduchu 35 °C DB; EWT 12 °C, LWT 7 °C

teplota vonkajšieho vzduchu 35 °C DB; EWT 23 °C, LWT 18 °C

8 Príslušenstvo

8.1 Štandardné príslušenstvo

Tabuľka 2-8.1: Štandardné príslušenstvo

Názov	Tvar	Množstvo	Názov	Tvar	Množstvo
inštalačná príručka		1	sťahovacia páska na káble zákazníka		2
návod na obsluhu		1	teplotný snímač pre zásobník na teplú úžitkovú vodu (T5)*	\bigcirc	1
príručka s technickými údajmi		1	predlžovací kábel pre T5		1
filter v tvare Y		1	spojovací sieťový kábel*	ئے	1
prípojka pre vratné potrubie vody		2	prípojka pre prívodné potrubie vody		1
Používateľské rozhranie		1			

*Poznámka:

Keď sú jednotky zapojené paralelne, napríklad keď je komunikácia v jednotke nestabilná (napríklad chybový kód Hd), pridajte medzi porty H1 a H2 na svorkovnici komunikačného systému spojovací sieťový kábel.

8.2 Voliteľné príslušenstvo

Tabuľka 2-8.2: Štandardné príslušenstvo

Názov	Tvar	Množstvo		
teplotný snímač pre vyvažovaciu nádobu (Tbt1)	\bigcirc	1	predlžovací kábel pre Tbt1	 1
teplotný snímač pre tepl. prietoku v zóne 2 (Tw2)	\bigcirc	1	predlžovací kábel pre Tw2	 1
teplotný snímač pre teplotu solárneho článku (Tsolar)	\bigcirc	1	predlžovací kábel pre Tsolar	 1

Poznámka:

1. Ak je systém nainštalovaný paralelne, do vyvažovacej nádoby musí byť pripojený a nainštalovaný Tbt1.

Je možné spoločne využívať snímač Tbt1, T5 a predlžovací kábel, rovnako je možné spoločne využívať Tw2, Tsolar a
predlžovací kábel. Ak si prajete využívať tieto funkcie v rovnakom čase, dodatočne prispôsobte tieto snímače a
predlžovací kábel.

3. časť Inštalácia

a nastavenia na mieste

1	Úvod k 3. časti
2	Inštalácia
3	Vodovodné potrubie42
4	Elektrické zapojenie46
5	Nastavenia spínača DIP48
6	Nastavenia otáčok zabudovaného obehového čerpadla
7	Nastavenia používateľského rozhrania na mieste
8	Prevádzkové parametre (Operation parameter)70
9	Pokyny na konfiguráciu siete71
10	Pokyny pre funkciu USB76
11	Príloha78
12	Tabuľka chybových kódov81
1 Úvod k 3. časti

1.1 Rámčeky s poznámkami pre technikov

Informácie uvedené v tomto Technickom katalógu môžu byť užitočné najmä pri projektovaní projektu so systémom NØRDIS OPTIMUS PRO Mono. Ďalšie dôležité informácie, ktoré môžu byť užitočné najmä počas inštalácie na mieste, sme uviedli v rámčekoch s názvom "Poznámky pre technikov" (pozrite príklad nižšie).

Poznámky pre technikov

 Rámčeky s poznámkami pre technikov obsahujú dôležité informácie, ktoré môžu byť užitočné najmä počas inštalácie na mieste, nie počas projektovania systému.

1.2 Definície

V tomto technickom katalógu sa pojem "platné právne predpisy" vzťahuje na všetky národné, miestne a ďalšie zákony, normy, kódexy, pravidlá, predpisy a iné právne predpisy, ktoré platia v danej situácii.

1.3 Preventívne opatrenia

Celú inštaláciu systému, vrátane inštalácie vodovodného potrubia a elektroinštalácie, musia vykonávať iba spôsobilí a vhodne kvalifikovaní, certifikovaní a akreditovaní profesionáli v súlade so všetkými platnými právnymi predpismi.

2 Inštalácia

2.1 Príjem dodávky a rozbalenie

Poznámky pre technikov

 Po dodaní jednotiek skontrolujte, či sa počas prepravy nejako nepoškodili. Ak došlo k poškodeniu povrchu alebo vonkajšej časti jednotky, odovzdajte o tom prepravnej spoločnosti písomnú správu.

Skontrolujte, či dodaný model, špecifikácie a množstvo dodaných jednotiek sú v súlade s objednávkou.

X

X

 Skontrolujte, či bolo dodané aj všetko objednané príslušenstvo. Uschovajte si používateľskú príručku pre budúce použitie.

2.2 Zdvíhanie

Poznámky pre technikov

- Pred zdvíhaním neodstraňujte žiadne obaly. Ak jednotky nie sú zabalené alebo ak je obal poškodený, použite vhodné dosky alebo obalový materiál, aby ste chránili jednotky.
- Naraz zdvíhajte iba jednu jednotku a v záujme stability použite dve laná.

Obrázok 3-2.1 Umiestnenie jednotky

2.3 Čo treba zvážiť pri výbere miesta inštalácie

Pri umiestnení vonkajšej jednotky treba zobrať do úvahy nasledujúce činitele:

- Vonkajšie jednotky nesmú byť vystavené priamemu žiareniu z tepelného zdroja s vysokou teplotou ani potenciálne výbušnému prostrediu. Vonkajšie jednotky je potrebné nainštalovať na miesto, ktoré je čo najvzdialenejšie od zdrojov tepla.
- Vonkajšie jednotky sa nesmú umiestňovať na miesta, ktoré sa často využívajú ako pracovný priestor. V prípade stavebných prác (napr. brúsenie a pod.), kde sa tvorí prach alebo nečistoty, ktoré môžu negatívne vplývať na výmenníky tepla.
- Vonkajšie jednotky sa nesmú inštalovať na miesta, kde môžu byť vystavené vplyvu oleja alebo korozívnych či škodlivých plynov, ako sú výpary kyslých alebo zásaditých roztokov.

- Vonkajšie jednotky sa musia inštalovať na miesta, ktoré sú dobre odvodňované a vetrané.
- Vonkajšie jednotky treba nainštalovať na miesto, ktoré je dostatočne blízko k požadovanému umiestneniu používateľského rozhrania, aby sa neprekročila dĺžka kábla používateľského rozhrania.
- V systémoch, ktoré sú nakonfigurované na ohrev teplej úžitkovej vody pre domácnosti a/alebo sú vybavené externým záložným elektrickým ohrievačom, je potrebné vonkajšie jednotky nainštalovať na také miesta, ktoré sú dostatočne blízko k zásobníku na teplú úžitkovú vodu a/alebo záložnému elektrickému ohrievaciemu telesu, aby bola dĺxa potrubných vedení a kabeláže snímačov teploty v povolenom rozsahu.
- Vonkajšie jednotky sa musia inštalovať na miesta, kde hluk jednotky nebude rušiť susedov.
- Vonkajšie jednotky sa musia inštalovať na bezpečné miesta, ktoré unesú hmotnosť jednotky a odolajú vibráciám jednotky a kde je možné jednotku nainštalovať do vodorovnej polohy.
- Vonkajšie jednotky sa musia nainštalovať na miesta, na ktorých nehrozí únik horľavého plynu ani inej horľavej látky
- Vonkajšie jednotky sa musia inštalovať na miesta, kde je dostatok priestoru na vykonávanie servisnej údržby.
- Vonkajšie jednotky sa musia inštalovať na miesta, ktoré sú v čo najväčšej miere chránené proti dažďu.

Vonkajšie jednotky sa musia inštalovať vo voľnom priestore, aby sa predišlo kontaktu malých zvierat s elektrickým komponentmi, čo môže mať za následok poruchu, dym alebo požiar.

Jednotka obsahuje horľavé chladivo a musí sa nainštalovať na dobre vetrané miesto. Ak sa jednotka nainštaluje do interiéru, musí sa navyše nainštalovať aj ďalšie zariadenie na detekciu únikov chladiva a ventilačné zariadenie v súlade s normou EN378.

Je potrebné prijať náležité opatrenia, aby sa zabránilo vniknutiu malých zvierat do jednotky, ktoré by ju používali ako úkryt.

2.4 Inštalácia v prípade silného vetra

Vietor, ktorý fúka proti výstupu vzduchu vonkajšej jednotky rýchlosťou 5 m/s a vyššou, bráni prúdeniu vzduchu cez jednotku, čo znižuje výkon jednotky, urýchľuje tvorbu námrazy v režime vykurovania alebo režime teplej úžitkovej vody a môže prerušiť prevádzku z dôvodu zvýšeného tlaku v chladiacom okruhu. Pri pôsobení veľmi silného vetra sa môže ventilátor otáčať mimoriadne rýchlo, čo môže viesť k jeho poškodeniu. Pri miestach, kde môže dôjsť k vystaveniu silnému vetru, treba zobrať do úvahy nasledujúce činitele:

- Stranu výstupu nasmerujte do pravého uhla od smeru vetra. Pozrite obrázok 3-2.2. Informácie o inštalácii vonkajšej
 jednotky na mieste, kde je možné predvídať smer vetra, nájdete na obrázku 3-2.3, kde je uvedená inštalácia jednotky.
- Nasmerujte stranu výstupu vzduchu k múru, plotu alebo stene budovy. Dbajte na to, aby bol pre inštaláciu dostatočný priestor.

Obrázok 3-2.2: Smer silného vetra pri inštalácii

Obrázok 3-2.3: Nákres inštalačnej miestnosti

2.5 Inštalácia v chladnom podnebí

Pri inštalácii v chladnom podnebí treba zobrať do úvahy nasledujúce činitele:

- Nikdy neinštalujte jednotku na miesto, kde by mohla byť strana s nasávaním priamo vystavená vetru.
- Aby sa zabránilo pôsobeniu vetra, na stranu vyfukovaného vzduchu jednotky nainštalujte ochrannú platňu
- Aby sa zabránilo pôsobeniu vetra, jednotku nainštalujte tak, aby strana s nasávaním smerovala k múru.
- V oblastiach, kde sa vyskytuje husté sneženie, treba nainštalovať striešku, ktorá bude brániť vniknutiu snehu do jednotky. Okrem toho je potrebné zvýšiť výšku základovej konštrukcie, aby sa jednotka zdvihla vyššie od zeme a zabezpečiť, aby špirála výmenníka tepla nebola ovplyvnená snehom. Pozrite obrázok 3-2.4. Poznámky:

1 Zhotovte veľkú striešku.

2 Zhotovte podstavec.

Jednotku nainštalujte dostatočne vysoko nad zemou, aby ju sneh nezasypal.

2.6 Inštalácia v teplom podnebí

Keďže sa vonkajšia teplota meria pomocou snímača vonkajšej teploty okolitého prostredia, uistite sa, že je vonkajšia jednotka nainštalovaná v tieni. Prípadne nad ňu postavte prístrešok, aby nebola vystavená priamemu slnečnému žiareniu. Aby na ňu nepôsobilo slnečné teplo, v opačnom prípade sa môže aktivovať ochrana systému.

2.7 Základná konštrukcia

Pri navrhovaní základnej konštrukcie vonkajšej jednotky treba zobrať do úvahy nasledujúce činitele:

- Ak je základová konštrukcia pevná, nebude dochádzať k nadmerným vibráciám a hluku. Základovú konštrukciu vonkajšej jednotky treba postaviť na pevnom podklade alebo na povrchu, ktorý je dostatočne pevný, aby uniesol
- hmotnosť jednotky.
 Základová konštrukcia musí byť vysoká aspoň 100 mm, aby dochádzalo k dostatočnému odvodneniu a aby do
- základovej konštrukcie jednotky nevnikla voda.
- Vhodné sú oceľové alebo betónové základové konštrukcie.
 Vonkajšie jednotky sa nesmú inštalovať na oporných konštrukciách, ktoré by sa mohli poškodiť nahromadenou vodou
- v prípade, že by sa odtok upchal.
 Jednotku pripevnite k základovej konštrukcii pomocou expanznej skrutky s Φ 10. Najlepšie je zaskrutkovať skrutky základovej konštrukcie, až kým ich dĺžka nie je 20 mm od povrchu základne.

3. časť – Inštalácia a nastavenia na mieste

2.8 Odvodnenie

Treba vytvoriť odvodňovací kanál na odvádzanie kondenzátu, ktorý sa môže tvoriť vo výmenníku tepla na strane vzduchu, keď jednotka pracuje v režime vykurovania alebo teplej úžitkovej vody. Odvodnenie by malo byť riešené tak, aby sa kondenzát nedostal na cestu a chodníky, a to najmä na miestach s podnebím, kde by takýto kondenzát mohol zamrznúť.

2.9 Vzdialenosti

Vonkajšie jednotky musia byť nainštalované tak, aby cez každú jednotku mohol vždy prúdiť dostatok vzduchu. Aby vonkajšie jednotky mohli fungovať správne, je medzi výmenníkmi tepla potrebné dostatočné prúdenie vzduchu. Ďalšie podrobnosti nájdete na nižšie uvedených obrázkoch.

Obrázok 3-2.7: Inštalácia jednej jednotky

Obrázok 3-2.8: Paralelné prepojenie dvoch alebo viacerých jednotiek

Obrázok 3-2.9: Paralelné prepojenie prednej a zadnej strany

3 Vodovodné potrubie

3.1 Kontroly vodného okruhu

OPTIMUS PRO Mono jednotky sú vybavené vstupom aj výstupom vody na pripojenie k vodnému okruhu. Jednotky OPTIMUS PRO Mono je možné pripojiť iba k uzavretým vodným okruhom. Pripojenie k otvorenému vodnému okruhu spôsobuje nadmernú koróziu vodovodného potrubia. Môžu sa používať iba materiály, ktoré spĺňajú požiadavky všetkých platných právnych predpisov.

Pred pokračovaním v inštalácii jednotky skontrolujte nasledujúce:

- Maximálny tlak vody ≤ 3 bar.
- Maximálna teplota vody ≤ 70 °C podľa bezpečnostného nastavenia zariadenia.
- Vždy používajte materiály, ktoré sú kompatibilné s vodou používanou v systéme a s materiálmi použitými v jednotke.
- Dbajte na to, aby komponenty v potrubí dokázali odolať tlaku vody a teplote.
- Vypúšťacie kohútiky musia byť umiestnené na všetkých najnižších miestach systému, aby sa umožnilo úplné vypustenie okruhu počas údržby.
- Na všetkých najvyšších miestach systému musia byť umiestnené odvzdušňovacie ventily. Odvzdušňovacie ventily by mali byť umiestnené na miestach, ktoré sú ľahko dostupné pre servis. Vo vnútri jednotky sa nachádza automatické odvzdušňovanie. Skontrolujte, či tento odvzdušňovací ventil nie je utiahnutý, aby bolo možné automatické uvoľnenie vzduchu vo vodnom okruhu.

3.2 Kontrola objemu vody a tlaku plynu expanznej nádoby

Vonkajšie jednotky sú vybavené expanznou nádobou (8 l), ktorá má prednastavený tlak plynu 1,0 bar. V záujme správneho fungovania jednotky môže byť nutné upraviť tlak v expanznej nádobe.

Výškový rozdiel inštalácie ¹	Objem vody ≤230 l	Objem vody > 230 l	
≤ 7 m	Nie je potrebné upravovať tlak plynu	Je potrebné vykonať úkony: •Tlak plynu sa musí znížiť, vypočítajte ho podľa pokynov v časti "Výpočet tlaku plynu expanznej nádoby" ² •Skontrolujte, či je objem vody nižší ako maximálny povolený objem vody (pozri obr. 3-3.1)	
> 7 m	Je potrebné vykonať úkony: •Tlak plynu sa musí zvýšiť, vypočítajte ho podľa pokynov v časti "Výpočet tlaku plynu expanznej nádoby" ² •Skontrolujte, či je objem vody nižší ako maximálny povolený objem vody (pozri obr. 3-3.1)	Expanzná nádoba vo vonkajšej jednotke je príliš malá pre daný systém. Je potrebné nainštalovať externú expanznú nádobu (dodávka stavby).	

Tabuľka 3-3.1: Nastavenie tlaku plynu expanznej nádoby

Poznámky:

 Výškový rozdiel je medzi najvyšším bodom vodného okruhu a expanznou nádobou vonkajšej jednotky. Pokiaľ je jednotka umiestnená v najvyššom bode systému, v takom prípade sa výškový rozdiel inštalácie považuje za nulový.

2. Výpočet tlaku plynu expanznej nádoby:

Tlak plynu (Pg), ktorý sa má nastaviť, závisí od maximálneho výškového rozdielu inštalácie (H) a vypočíta sa ako Pg(bar) = (H(m)/10+0,3) bar

Ak chcete stanoviť maximálny povolený objem vody v celom okruhu, postupujte nasledovne:

Stanovte vypočítaný tlak plynu (Pg) pre zodpovedajúci maximálny objem vody pomocou obrázka 3-3.1.
 Obrázok 3-3.1: Maximálny objem vody

A1: Systém bez glykolu A2: Systém s 25 % propylénglykolu

Tlak plynu = tlak plynu expanznej nádoby Maximálny objem vody = maximálny objem vody v systéme

 Skontrolujte, či je celkový objem vody v celom vodnom okruhu nižší ako táto hodnota. Ak tomu tak nie je, expanzná nádoba vo vnútri jednotky je príliš malá pre danú inštaláciu.

Príklad 1

Jednotka je inštalovaná 5 m pod najvyšším bodom vodného okruhu. Celkový objem vody vo vodnom okruhu je 100 l. V tomto príklade nie je potrebný žiadny úkon ani nastavenie.

Príklad 2

Jednotka je nainštalovaná v najvyššom bode vodného okruhu. Celkový objem vody vo vodnom okruhu je 250 l. Výsledok:

- Keďže 250 l je viac ako 230 l, musí sa znížiť tlak plynu.
- Požadovaný tlak plynu je: Pg(bar) = (H(m)/10+0,3) bar = (0/10+0,3) bar = 0,3 bar
- Príslušný maximálny objem vody je možné odčítať z grafu: približne 310 l.

 - Keďže celkový objem vody (250 l) je nižší ako maximálny objem vody (310 l), expanzná nádoba bude pre danú inštaláciu postačovať.

Ak je potrebné zmeniť prednastavený tlak plynu expanznej nádoby (1,0 bar), postupujte podľa nasledovných pokynov:

- Na nastavenie tlaku plynu expanznej nádoby použite iba suchý dusík.
- Nesprávne nastavenie tlaku plynu expanznej nádoby spôsobí poruchu systému. Tlak plynu smie nastavovať iba kvalifikovaný inštalatér.

Ak je expanzná nádoba jednotky príliš malá pre danú inštaláciu, je nutné použiť prídavnú expanznú nádobu.

- Vypočítajte tlak plynu expanznej nádoby: Pg(bar) = (H(m)/10+0,3) bar
 Tlak plynu je potrebné upraviť aj v expanznej nádobe, ktorá je integrovaná v jednotke.
- Vypočítajte požadovaný objem prídavnej expanznej nádoby: V1 = 0,0693*Vvody/(2,5-Pg)-V0
 Vvody: objem vody v systéme

V0: objem expanznej nádoby, ktorá je integrovaná v jednotke (8 l)

3.3 Pripojenie vodného okruhu

Pripojenie potrubí vodného okruhu sa musí vykonať správne v súlade s označeniami na vonkajšej jednotke a s ohľadom na dané prívodné a vratné potrubie vody. Ak sa do vodného okruhu dostane vzduch, vlhkosť alebo prach, môže to spôsobiť problémy. Preto pri pripájaní potrubí vodného okruhu dbajte na nasledujúce:

- Používajte iba čisté rúry.
- Pri odstraňovaní výčnelkov držte rúry otvoreným koncom nadol.

- Ak rúru vkladáte cez stenu, zakryte jej koniec, aby do nej nevnikol prach a nečistoty.
- Na utesnenie spojov použite dobré závitové tesnenie. Tesnenie musí odolať tlaku a teplotám, ktorým je systém vystavený.
- Ak používate kovové rúry, ktoré nie sú z medi, jednotlivé druhy materiálov izolujte, aby nedošlo ku galvanickej korózii.
- Keďže meď je mäkký materiál, pri zapojení vodného okruhu použite vhodné nástroje. V prípade použitia nevhodných nástrojov môže dôjsť k poškodeniu potrubia.

3.4 Ochrana vodného okruhu pred zamrznutím

V dôsledku námrazy sa môže hydraulický systém poškodiť. Všetky vnútorné časti hydraulického systému sú izolované, aby sa znížila strata tepla. Aj potrubie na mieste montáže musí byť dodatočne zaizolované.

- Softvér umožňuje špeciálne funkcie využitím tepelného čerpadla, aby bol celý systém chránený pred zamrznutím.
 Keď teplota vody v systéme klesne na určitú hodnotu, jednotka ohreje vodu pomocou tepelného čerpadla alebo záložného ohrievača. Ke tď eplota stúpne na istú hodnotu, ochrana pred zamrznutím sa vypne.
- Ak dôjde k výpadku napájania, tieto funkcie nebudú k dispozícii, a tak jednotka nebude chránená pred zamrznutím. K výpadku napájania môže dôjsť aj vtedy, keď nie je jednotka pod dohľadom. Preto dodávateľ odporúča pridať do vodovodného systému nemrznúcu kvapalinu.

V závislosti od toho, aká minimálna vonkajšia teplota sa očakáva, pridajte do vodovodného systému roztok glykolu podľa tabuľky uvedenej nižšie. Keď sa do systému pridá glykol, bod mrazu vody bude nižší a ovplyvní to výkon jednotky. Korekčný faktor pre výkon jednotky, prietok a pokles tlaku v systéme je uvedený v tabuľkách 3-3.2 a 3-3.3.

Koncentrácia					
etylénglykolu (%)	Úprava výkonu chladenia	Úprava výkonu	Odpor vody	Úprava prietoku vody	Minimalna vonkajsia teplota (°C)
0	1,000	1,000	1,000	1,000	0
10	0,984	0,998	1,118	1,019	-5
20	0,973	0,995	1,268	1,051	-15
30	0,965	0,992	1,482	1,092	-25

Tabuľka 3-3.2: Etylénglykol

Tabuľka 3-3.3: Propylénglykol (vrátane potrebných inhibítorov,	, podľa EN1717 klasifikovaný ako kategória III)
--	---

Koncontrácia					
propylénglykolu	Úprava výkonu	Úprava výkonu	Odpor vody	Úprava prietoku	Minimálna vonkajšia teplota (°C)
(%)	chladenia			vody	
0	1,000	1,000	1,000	1,000	0
10	0,976	0,996	1,071	1,000	-4
20	0,961	0,992	1,189	1,016	-12
30	0,948	0,988	1,380	1,034	-20

Glykol absorbuje z prostredia vodu. Preto NEPRIDÁVAJTE glykol, ktorý bol vystavený pôsobeniu vzduchu. Ak necháte nádobu s glykolom otvorenú, zvýši sa koncentrácia vody. Koncentrácia glykolu je potom nižšia, ako sa predpokladá. V dôsledku toho môžu hydraulické komponenty aj tak zamrznúť. Urobte preventívne opatrenia, aby bol glykol vystavený pôsobeniu vzduchu len minimálne.

V dôsledku glykolu môže dôjsť ku korózii systému. Pôsobením kyslíka môže neinhibovaný glykol nadobudnúť kyslý charakter. Tento proces urýchľuje prítomnosť medi a vyšších teplôt. Kyslý neinhibovaný glykol napáda kovové povrchy a vytvára galvanicky skorodované miesta, ktoré môžu systém veľmi poškodiť. Mimoriadne dôležité je toto:

Úpravu vody musí správne vykonať kvalifikovaný odborník na vodu.

- Musí sa vybrať glykol s inhibítormi korózie, aby dokázal odolať kyselinám vzniknutým pri oxidácii glykolov.
- V prípade systému so zásobníkom na teplú úžitkovú vodu je povolené používať iba propylénglykol. Ak súčasťou systému NIE je zásobník na teplú úžitkovú vodu, môžete použiť propylénglykol alebo etylénglykol.
- Nesmie sa používať glykol pre automobily, pretože inhibítory korózie, ktoré sú v ňom obsiahnuté, majú obmedzenú životnosť a obsahujú silikáty, ktoré môžu znečistiť alebo upchať systém.
- Pre systémy s glykolom sa nesmie používať galvanizované potrubie, pretože môže dôjsť k uvoľneniu určitých prvkov do inhibítora korózie glykolu.
- Treba si overiť, či je glykol kompatibilný s materiálmi použitými v systéme.
- Ochrana proti prasknutiu: glykol chráni potrubie pred prasknutím, no NECHRÁNI tekutinu v potrubí pred zamrznutím.
- Ochrana proti zamrznutiu: glykol chráni tekutinu v potrubí pred zamrznutím.
- Požadované koncentrácie sa môžu vzhľadom na typ glykolu odlišovať. VŽDY si porovnajte požiadavky z tabuľky uvedenej vyššie so špecifikáciami, ktoré uvádza výrobca glykolu. Ak je to potrebné, splňte požiadavky stanovené výrobcom glykolu.
- Ak je tekutina v systéme zamrznutá, čerpadlo NEBUDE môcť naštartovať. Pamätajte na to, že ak chránite systém iba pred prasknutím, tekutina vnútri môže stále zamrznúť.
- Ak voda v systéme stojí, je dosť pravdepodobné, že systém zamrzne a poškodí sa.

3.5 Prietokový spínač vody

Voda sa môže dostať do prietokového spínača a ostať tam. Keď je teplota príliš nízka, môže zamrznúť. V takom prípade treba prietokový spínač vybrať a vysušiť a potom znovu namontovať do jednotky.

- Otáčaním proti smeru hodinových ručičiek vyberiete prietokový spínač vody.
- Prietokový spínač vody úplne vysušte.

3.6 Pridanie vody

- Pripojte k plniacemu ventilu prívod vody a ventil otvorte.
- Zabezpečte, aby bol automatický odvzdušňovací ventil otvorený (aspoň na 2 otáčky). Pozrite obrázok 3-3.3.
- Naplňte vodou, až kým manometer neukazuje tlak približne 2,0 bar. Pomocou odvzdušňovacieho ventila odstráňte z okruhu čo najviac vzduchu. Vzduch vo vodnom okruhu môže spôsobiť poškodenie záložného elektrického ohrievača.

3.7 Izolácia vodovodného potrubia

Celý vodný okruh vrátane všetkých potrubí musí byť izolovaný, aby počas chladenia nedošlo ku kondenzácii a aby sa minimalizoval ohrev a zabezpečil potrebný výkon chladenia a zároveň aby nedošlo k zamrznutiu vonkajšieho vodovodného potrubia v zime. Izolačný materiál musí spĺňať požiarnu odolnosť triedy B1 a byť v súlade so všetkými platnými právnymi predpismi. Tesniaci materiál musí byť minimálne 13 mm hrubý a mať tepelnú vodivosť 0,039 W/mK, aby nedošlo k zamrznutiu vonkajšieho vodovodného potrubia. Ak je teplota vonkajšieho prostredia vyššia ako 30 °C a vlhkosť väčšia ako relatívna vlhkosť 80 %, tesniaci materiál musí byť hrubý minimálne 20 mm, aby nedošlo ku kondenzácii na povrchu tesnenia.

Obrázok 3-3.3: Odvzdušňovací ventil

Keď je systém v prevádzke, nepripevňujte čierny plastový kryt na odvzdušňovací ventil na vrchnej strane jednotky. Otvorte odvzdušňovací ventil: otočte ním proti smeru hodinových ručičiek

4 Elektrické zapojenie

4.1 Všeobecné

Poznámky pre technikov

Upozornenie

- Celú inštaláciu a zapojenie káblov musia vykonávať iba spôsobilí a vhodne kvalifikovaní, certifikovaní a akreditovaní profesionáli v súlade so všetkými platnými právnymi predpismi.
- Elektrické systémy musia byť uzemnené v súlade so všetkými platnými právnymi predpismi.

X

- V súlade so všetkými platnými právnymi predpismi sa musia použiť aj ističe a prúdové chrániče (prerušovače obvodu pri chybe uzemnenia).
- Schémy zapojenia v tejto príručke sú iba všeobecným návodom a nie sú určené pre konkrétnu inštaláciu ani neobsahujú všetky podrobnosti pre konkrétnu inštaláciu.
- Vodovodné potrubie, napájacie a komunikačné káble sa zvyčajne vedú rovnobežne. No komunikačné káble nesmú byť v jednom zväzku s napájacími. Aby nedochádzalo k rušeniu signálu, napájacie a komunikačné káble sa nesmú viesť v tej istej chráničke. Ak je napájací prúd menší ako 10 A, medzi napájacími a komunikačnými káblami treba dodržať vzdialenosť 300 mm. Ak je napájací prúd v rozsahu 10 A až 50 A, treba dodržať vzdialenosť minimálne 500 mm.

4.2 Preventívne opatrenia

- Káble upevňujte tak, aby neprišli do kontaktu s potrubím (najmä na strane s vysokým tlakom).
- Upevnite elektrickú kabeláž pomocou sťahovacích pások na káble podľa znázornenia na obrázku 3-1.14 a obrázku 3-1.15. Aby neprišli do kontaktu s potrubím, a to najmäna strane s vysokým tlakom.

- Dbajte na to, aby na konektory vo svorkovnici nepôsobil externý tlak.
- Pri inštalácii prúdového chrániča dbajte na to, aby bol kompatibilný s invertorom (odolný proti vysokofrekvenčnému elektrickému rušeniu), aby sa chránič zbytočne neaktivoval.
- Súčasťou tejto jednotky je invertor. Ak sa nainštaluje kondenzátor pre fázový posun, nielenže sa zhorší účinník, ale tiež môže dôjsť k abnormálnemu prehriatiu kondenzátora v dôsledku vysokofrekvenčných vĺn. Nikdy neinštalujte kondenzátor pre fázový posun, lebo môže zapríčiniť nehodu.

4.3 Pokyny

- Väčšina zapojení jednotky na mieste sa má robiť na svorkovnici v skrinke. K svorkovnici sa dostanete tak, že odstránite riadiaci panel skrinky.
- Všetky káble zafixujte sťahovacími páskami.

- Pre záložný elektrický ohrievač je potrebný samostatný napájací obvod.
- Ak je súčasťou inštalácie zásobník na teplú úžitkovú vodu (dodávka stavby), pre ponorný ohrievač je potrebný samostatný napájací obvod.
- Rozložte elektrické káble tak, aby sa predný kryt pri zapájaní nezdvihol a predný kryt bezpečne pripevnite.
- Riaďte sa elektrickými schémami zapojenia. Pozrite si obrázok 2-4.1 v časti 2, 4 "Schéma zapojenia".
- Nainštalujte vodiče a kryt pevne upevnite, aby dobre držal.

4.4 Prehľad zapojenia

Obrázok 3-4.2: Prehľad zapojenia

Legend	а		
А	Vonkajšia jednotka	Ι	P_d: Cirkulačné čerpadlo TÚV (dodávka stavby)
В	Solárny panel (dodávka stavby)	J	SV2: 3-cestný ventil (dodávka stavby)
С	Používateľské rozhranie	К	SV1: 3-cestný ventil pre zásobník na teplú úžitkovú vodu (dodávka stavby
D	Izbový termostat (dodávka stavby)	L	Zásobník na teplú úžitkovú vodu (dodávka stavby)
E	Pomocný zdroj tepla AHS (dodávka stavby)	М	Prídavný ohrievač (dodávka stavby)
F	P_s: Čerpadlo solárneho systému (dodávka stavby	Ν	Stýkač (dodávka stavby)
G	P_C: Obehové čerpadlo/čerpadlo zóny 2 (dodávka stavby)	0	Napájanie
Н	P o: Samostatné obehové čerpadlo/čerpadlo zóny 1 (dodávka stavby)	Р	SV3: 3-cestný ventil pre zónu 2 (dodávka stavby)

Tabuľka 3-4.1: Požiadavky na zapojenie

Položka	Opis	Prúd	Požadovaný počet vodičov	Maximálny prúd
1	Signálny kábel pre solárnu energ. súpravu	AC	2	200 mA
2	Kábel používateľského rozhrania	AC	5	200 mA
3	Kábel pre izbový termostat	AC	2 alebo 3	200 mAª
4	Kábel riadenia kotla	/	2	200 mA
5	Kábel snímača teploty pre Tw2	DC	2	b
9	Riadiaci kábel pre cirkulačné čerpadlo TÚV	AC	2	200 mAª
10	Riadiaci kábel pre 3-cestný ventil	AC	2 alebo 3	200 mAª
11	Riadiaci kábel pre 3-cestný ventil	AC	2 alebo 3	200 mAª
12	Kábel snímača teploty pre T5	DC	2	b
13	Riadiaci kábel pre prídavný ohrievač	AC	2	200 mAª
15	Napájací kábel pre vonkajšiu jednotku	AC	3+GND	C
16	Riadiaci kábel pre 3-cestný ventil	AC	2 alebo 3	200 mA ^a

Poznámky:

a. Minimálny prierez kábla AWG 18 (0,75 mm²⁾

b. Káble snímača teploty (10 m) sa dodávajú so snímačom výstupnej teplotou zóny 2 Tw2 a snímačom zásobníka na teplú úžitkovú vodu T5.

c. Podrobnosti sú uvedené v Tabuľke 3-4.2.

Tabuľka 3-4.2: Napájanie vonkajšej jednotky

Jednotka	18 kW	22 kW	26 kW	30 kW
Maximálny nadprúdový chránič (MOP)	18	21	24	28
Prierez kábla (mm²)	6	6	6	6
riici cz kaula (ililii)	0	0	0	0

5 Nastavenia spínača DIP

Spínač DIP sa nachádza na hlavnej riadiacej doske hydraulického modulu a umožňuje nakonfigurovať inštaláciu s teplotným snímačom pre zdroj dodatočného ohrevu, s druhým vnútorným záložným ohrievačom atď.

Spínač		ON = 1	OFF = 0	
S1	1	rezervované	rezervované	
	2	rezervované	rezervované	
		00 = bez IBH a AHS 10 = s IBH 01 = s AHS pre režim vykurovania 11 = s AHS pre režim vykurovania a režim TÚV		
52	1	spustenie čerpadla O po 24 hodinách bude neplatné	Spustenie čerpadla O po 24 hodinách bude platné	
Z 1 2 3 4	2	bez TBH	s TBH	
	3/4	00 = čerpadlo s variabilnými otáčkami (max. dopravná výška: 8,5 m) 01 = čerpadlo s konštantnými otáčkami 10 = čerpadlo s variabilnými otáčkami (max. dopravná výška: 10,5 m 11 = čerpadlo s variabilnými otáčkami (max. dopravná výška: 9 m)		
S4 70 1 2 3 4 1 2 3 4	1	Hlavná jednotka: vymaže adresy všetkých podriadených jednotiek; Podriadená jednotka: vymaže svoju vlastnú adresu;		
	2/3/4	rezervované		
	1/2	00 = Podriadená jednotka (Slave) 11 = Hlavná jednotka (Master)		

6 Nastavenia otáčok zabudovaného obehového čerpadla

Otáčky zabudovaného obehového čerpadla je možné zvoliť nastavením červeného gombíka na čerpadle. Predvolené výrobné nastavenie poskytuje najvyššie otáčky (III). Ak je prietok vody v systéme príliš vysoký, otáčky čerpadla možno nastaviť na strednú (II) alebo nízku (I) úroveň. Vzťah medzi externým statickým tlakom a rýchlosťou prietoku vody je opísaný v 2. časti, 7 "Výkon hydraulického systému".

Obrázok 3-6.2: Poruchy súvisiace so zdrojmi externého rušenia

Poruchy	Príčiny	Náprava
Čerpadlo nefunguje, aj keď je	Chybná elektrická poistka.	Skontrolujte poistky.
zaphute napajanie.		
Čierna obrazovka.	Čerpadlo nemá el. napätie.	Obnovte napájanie po výpadku.
		Zvýšte nasávací tlak systému v rámci
		prípustného rozsahu.
		Skontrolujte nastavenie dopravnej výšky a
		v prípade potreby nastavte nižšiu
		dopravnú výšku.

Signalizácia porúch

- Poruchy sú signalizované prostredníctvom LED displeja.
- Poruchový LED indikátor nepretržite svieti na červeno.
- Čerpadlo sa vypne (v závislosti od daného chybového kódu) a pokúsi sa o cyklické reštartovanie. (najmä pri chybovom kóde E10 (zablokovanie): Po cca 10 minútach sa čerpadlo natrvalo vypne a zobrazí sa chybový kód.)

Obrázok 3-6.3: Signalizácia p	orúch
-------------------------------	-------

Č. kódu	Porucha	Príčina	Náprava
E04	Podpätie sieťového	Príliš nízke napájacie napätie na	Skontrolujte napätie el. siete
	napájania	strane el. siete	
E05	Prepätie sieťového	Príliš vysoké napájacie napätie na	Skontrolujte napätie el. siete
	napájania	strane el. siete	
E09	Turbínová prevádzka	Čerpadlo sa otáča opačne	Skontrolujte prietok, v prípade
		(kvapalina preteká čerpadlom z	potreby nainštalujte jednosmerné
		výtlakovej na saciu stranu)	ventily
E10	Zablokovanie	Rotor je zablokovaný	Požiadajte o pomoc zákaznícky servis
E21*	Preťaženie	Ťažký chod motora	Požiadajte o pomoc zákaznícky servis
E23	Skrat	Príliš vysoký prúd motora	Požiadajte o pomoc zákaznícky servis
E25	Kontakty/vinutie	Chybné vinutie motora	Požiadajte o pomoc zákaznícky servis
E30	Prehriaty modul	Príliš vysoká teplota vo vnútri	Zlepšite vetranie miestnosti,
		modulu	skontrolujte prevádzkové podmienky,
			v prípade potreby požiadajte o pomoc
			zákaznícky servis
E31	Prehriata napájacia časť	Príliš vysoká teplota okolitého	Zlepšite vetranie miestnosti,

		prostredia	skontrolujte prevádzkové podmienky,
			v prípade potreby požiadajte o pomoc
			zákaznícky servis
E36	Elektronické poruchy	Chybná elektronika	Požiadajte o pomoc zákaznícky servis

* Okrem LED displeja nepretržite svieti načerveno signalizačný LED indikátor poruchy.

Signalizácia výstrah

- Výstrahy sú signalizované prostredníctvom LED displeja.
- Signalizačný LED indikátor poruchy a SSM relé sa neaktivujú.
- Čerpadlo bude pokračovať v prevádzke s obmedzeným výkonom.
- Indikovaný chybný prevádzkový stav sa nesmie vyskytovať príliš dlho. Musí sa čo najskôr odstrániť jeho príčina.

Obrázok 3-6.4: Signalizácia výstrah

Č. kódu	Porucha	Príčina	Náprava
E07	Generátorová prevádzka	Cez hydrauliku čerpadla preteká	Skontrolujte systém
		kvapalina.	
E11	Chod na sucho	Odvzdušnite čerpadlo	Skontrolujte objem/tlak vody
E21*	Preťaženie	Spomalený chod motora, čerpadlo	Skontrolujte okolité podmienky
		pracuje mimo svojich špecifikácií	
		(napr. vysoká teplota modulov).	
		Rýchlosť je nižšia ako pri bežnej	
		prevádzke.	

Okrem LED displeja nepretržite svieti načerveno signalizačný LED indikátor poruchy.

Aby sa zabezpečila prevádzková životnosť čerpadla, odporúča sa, aby jednotka bežala aspoň raz za 2 týždne (uistite sa, že je spustené čerpadlo) alebo ju nechať dlhodobo zapnutú (v pohotovostnom stave so zapnutým napájaním jednotka spustí čerpadlo na 3 minúty každých 6 hodín)

7 Nastavenia používateľského rozhrania na mieste

7.1 Úvod

Pri inštalácii by mal technik nakonfigurovať nastavenia a parametre jednotky OPTIMUS PRO Mono tak, aby vyhovovali konfigurácii inštalácie, podmienkam podnebia a požiadavkám koncového používateľa. Príslušné nastavenia sa dajú nájsť a programovať v ponuke **FOR SERVICEMAN** v používateľskom rozhraní OPTIMUS PRO Mono. V ponukách a nastaveniach používateľského rozhrania sa dá pohybovať pomocou dotykových tlačidiel používateľského rozhrania, ako je uvedené v tabuľke 3-7.1.

Tabuľka 3-7.1: Tlačidlá v používateľskom rozhraní

Tlačidlá	Funkcia
Θ	Prejsť do štruktúry ponuky (na domovskú stránku).
▲	Posúvať sa kurzorom po obrazovke.
< ▶	Posúvať sa v štruktúre ponuky.
▼	Prispôsobiť nastavenia.
	Zapnúť/vypnúť prevádzku vykurovania/chladenia priestoru
ڻ ٺ	alebo režim TÚV.
	Zapnúť/vypnúť f unkcie v štruktúre ponuky.
<u>ح</u>	Vrátiť sa o jednu úroveň nahor.
	Dlhým stlačením zamknúť/odomknúť ovládač.
<u>ය</u>	Zamknúť/odomknúť niektoré funkcie, napríklad "Prispôsobenie
	teploty TÚV".
	Prejsť na ďalší krok pri programovaní položky v štruktúre
▲	ponuky a potvrdiť výber na presunutie do vedľajšej ponuky v
	štruktúre ponuky.

7.2 Štruktúra ponuky

FOR SERVICEMAN 1 DHW MODE SETTING 2 COOL MODE SETTING **3 HEAT MODE SETTING** 4 AUTO MODE SETTING 5 TEMP. TYPE SETTING **6 ROOM THERMOSTAT** 7 OTHER HEATING SOURECE 8 HOLIDAY AWAY SETTING 9 SERVICE CALL **10 RESTORE FACTORY SETTINGS** 11TEST RUN **12 SPECIAL FUNCTION 13 AUTO RESTART** 14 POWER INPUT LIMI TATION **15 INPUT DEFINE** 16 CASCADE SET 17 HMI ADDRESS SET

2 COOL MODE SETTING 2.1 COOL MODE 2.2 t_T4_FRESH_C 2.3 T4CMAX 2.4 T4CMIN 2.5 dT1SC 2.6 dTSC 2.7 t_INTERVAL_C 2.8 T1SetC1 2.9 T1SetC2 2.10 T4C1 2.11 T4C2 2.12 ZONE1 C-EMISSION 2.13 ZONE2 C-EMISSION		1.1 DI 1.2 DI 1.3 DI 1.4 DI 1.5 DI 1.5 DI 1.6 dT 1.7 dT 1.8 T ² 1.0 t 1.10 t 1.11 c 1.12 T 1.13 t 1.13 t 1.15 t 1.15 t 1.16 t
 4 AUTO MODE SETTING 4.1 T4AUTOCMIN 4.2 T4AUTOHMAX		1.17 t 1.18 t 1.19 F 1.20 F 1.21 F
5 TEMP. TYPE SETTING 5.1 WATER FLOW TEMP. 5.2 ROOM TEMP. 5.3 DOUBLE ZONE		3 HEA 3.1 HE 3.2 t_1 3.3 T4
 6 ROOM THERMOSTAT 6.1ROOM THERMOSTAT		3.4 T4 3.5 dT 3.6 dT 3.7 t_l
7 OTHER HEATING SOURCE 7.1 dT1_IBH_ON 7.2 t_IBH_DELAY 7.3 T4_IBH_ON 7.4 dT1_AHS_ON 7.5 t_AHS_DELAY 7.6 T4_AHS_ON 7.7 IBH LOCATE 7.8 P_IBH1 7.9 P_IBH2 7.10 P_TBH		3.8 T1 3.9 T1 3.10 T 3.11 T 3.12 Z 3.13 Z 3.14 t_
8 HOLIDAY AWAY SETTING 8.1 T1S_H.AH 8.2 T5S_H.ADHW		
 9 SERVICE CALL PHONE NO. MOBILE NO.		
10 RESTORE FACTORY SETTINGS		
 11 TEST RUN		
 12 SPECIAL FUNCTION		
13 AUTO RESTART 13.1 COOL/HEAT MODE 13.2 DHW MODE		
14 POWER INPUT LIMITATION 14.1 POWER LIMITATION		16 CA 16.1 P 16.2 T
15 INPUT DEFINE(M1M2) 15.1 M1M2 15.2 SMART GRID 15.3 Tw2 15.4 Tbt1 15.5 Tbt2 15.6 Ta 15.7 Ta-adj 15.8 SOLAR INPUT 15.9 F-PIPE LENGTH 15.10 RT/Ta_PCB 15.11 PUMP_I SILENT MODE 15.12 DFT1/DFT2		16.3 A

1 DHW MODE SETTING HW MODE ISINFECT HW PRIORITY HW PUMP_D HW PRIORITY TIME SET T5_ON F1S5 4DHWMAX 4DHWMIN _INTERVAL_DHW dT5_TBH_OFF F4_TBH_ON _TBH_DELAY _DI_HIGHTEMP DI MAX DHWHP_MAX PUMP_D TIMER PUMP D RUNNING TIME PUMP_D DISINFECT RUN T MODE SETTING EAT MODE [4_FRESH_H HMAX 1 HMIN 1SH SH INTERVAL_H SetH1 SetH2 -4H1 -4H2 ONE1 H-EMISSION ONE2 H-EMISSION DELAY_PUMP

16 CASCADE SET 16.1 PER_START 16.2 TIME_ADJUST 16.3 ADDRESS RESET

17 HMI ADDRESS SET 17.1 HMI SET 17.2 HMI ADDRESS FOR BMS 17.3 STOP BIT

7.3 Ponuka FOR SERVICEMAN

Cez obrazovku FOR SERVICEMAN môže technik nakonfigurovať systém a nastaviť parametre. Do ponuky FOR SERVICEMAN sa dostanete cez MENU > FOR SERVICEMAN.

Heslo zadáte tak, že sa šípkami ◀ ► budete pohybovať medzi číslicami a šípkami ▼ ▲ zvolíte ich hodnotu. Potom stlačte **OK**. Heslo je 234. Pozrite obrázok 3-7.2.

Po zadaní hesla sa zobrazia nasledujúce stránky. Pozrite obrázok 3-7.3.

Obrázok 3-7.3: Ponuka FOR SERVICEMAN

Obrázok 3-7.2: Obrazovka FOR SERVICEMAN na zadanie hesla

				<i>c</i>	
FOR SERVICEMAN	1/3	FOR SERVICEMAN	2/3	FOR SERVICEMAN	3/3
1. DHW MODE SETTING		7. OTHER HEATING SOU	RCE	13. AUTO RESTART	
2. COOL MODE SETTING		8. HOLIDAY AWAY SETTIN	١G	14. POWER INPUT LIMIT	ATION
3. HEAT MODE SETTING		9. SERVICE CALL SETTIN	IG	15. INPUT DEFINE	
4. AUTO MODE SETTING		10. RESTORE FACTORY S	SETTINGS	16. CASCADE SET	
5. TEMP.TYPE SETTING		11. TEST RUN		17. HMI ADDRESS SET	
6. ROOM THERMOSTAT		12. SPECIAL FUNCTION			
ENTER	÷		F		÷

Ponuka DHW MODE SETTING 7.4

Prehľad ponuky DHW MODE SETTING 7.4.1

MENU > FOR SERVICEMAN > DHW MODE SETTING

				<i>,</i>	-
1 DHW MODE SETTING	1/5	1 DHW MODE SETTING	2/5	1 DHW MODE SETTING	3/5
1.1 DHW MODE	YES	1.6 dT5_ON	5°C	1.11 dT5_TBH_OFF	5 °C
1.2 DISINFECT	YES	1.7 dT1S5	10°C	1.12 T4_TBH_ON	5 °C
1.3 DHW PRIORITY	YES	1.8 T4DHWMAX	43°C	1.13 t_TBH_DELAY	30 MIN
1.4 DHW PUMP D	YES	1.9 T4DHWMIN	-10°C	1.14 T5S_DISINFECT	65°C
1.5 DHW PRIORITY TIME SET	NON	1.10 t_INTERVAL_DHW	5 MIN	1.15 t_DI_HIGHTEMP.	15MIN
ADJUST		ADJUST		ADJUST	
1 DHW MODE SETTING	4/5	1 DHW MODE SETTING	5/5		
1.16 t DI MAX	210 MIN	1.21 PUMP_D DISINFECT RUN	NON		
1.17 t_DHWHP_RESTRICT	30 MIN				
1.18 t_DHWHP_MAX	120 MIN				
1.19 PUMP_D TIMER	YES				
1.20 PUMP_D RUNNING TIME	5 MIN				
ADJUST		ADJUST			

Obrázok 3-7.4: Ponuka DHW MODE SETTING

V časti DHW MODE SETTING treba nastaviť nasledujúce parametre.

DHW MODE umožňuje aktivovať a deaktivovať režim TÚV. Pre inštalácie so zásobníkmi TÚV zvoľte YES na aktiváciu režimu TÚV. Pre inštalácie bez zásobníkov TÚV zvoľte NON na deaktiváciu režimu TÚV.

V časti **DISINFECT** sa nastavuje, či sa vykoná dezinfekcia.

V časti DHW PRIORITY sa nastavuje, či má prioritu ohrev teplej úžitkovej vody alebo vykurovanie/chladenie priestoru. Ak sa vyberie NON v režime DHW PRIORITY, ak je dostupný, a vykurovanie/chladenie priestoru je nastavené na OFF, tepelné čerpadlo bude zohrievať vodu, ako je požadované. Ak je vykurovanie/chladenie priestoru nastavené na ON, bude sa

ohrievať voda, ako je požadované, keď nie je dostupný ponorný ohrievač. Tepelné čerpadlo bude pracovať pre ohrev úžitkovej vody iba v prípade, keď je vykurovanie/chladenie priestoru nastavené na **OFF**.

V časti **DHW PUMP_D** sa nastavuje, či bude čerpadlo TÚV riadené jednotkou OPT I MUSPRO Mono. Ak má byť čerpadlo TÚV riadené jednotkou OPT I MUS PRO Mono, vyberte **YES**. Ak nemá byť čerpadlo TÚV riadené jednotkou OPT I MUS PRO Mono, vyberte **NON**.

V časti DHW PUMP PRIORITY TIME SET sa nastavuje čas prevádzky TÚV počas režimu DHW PRIORITY.

V časti **dT5_ON** sa nastavuje rozdiel teplôt medzi nastavenou teplotou TÚV (T 5S) a teplotou vody v zásobníku TÚV (T 5), po prekročení ktorého má tepelné čerpadlo dodať ohriatu vodu do zásobníka TÚV. K eď T 5S - T 5 \ge dT 5_ON, tepelné čerpadlo dodáva ohriatu vodu do zásobníka TÚV.

Poznámka: Ak je teplota vody na výstupe z tepelného čerpadla vyššia, ako je prevádzkový limit pre teplotu vody na výstupe v režime TÚV (T 5stop), tepelné čerpadlo nedodáva ohriatu vodu do zásobníka TÚV Prevádzkový limit teploty vody na výstupe v režime TÚV je úmerný teplote okolia, ako vidno na obrázku 2-6.3 v 2. časti, 6 "Prevádzkové limity".

V časti dT1S5 sa určuje nastavená teplota vody na výstupe

z tepelného čerpadla (T 1S) v závislosti od teploty vody v zásobník TÚV (T 5). Pre režim TÚV používateľ určuje nastavenú teplotu TÚV (T 5S) na hlavnej obrazovke a nemôže manuálne nastaviť T 1S. T 1S je nastavená ako T 1S = T 5 + dT 1S 5.

Obrázok 3-7.6 zobrazuje fungovanie tepelného čerpadla a ponorného ohrievača (voliteľné) v režime TÚV. Ak je teplota vody v zásobníku TÚV (T 5) nižšia ako minimálna nastavená teplota vody TÚV (T 5S) a prevádzkový limit teploty vody na výstupe tepelného čerpadla (T 5stop) (pozrite obrázok 2-6.3 v 2. časti, 6 "Prevádzkové limity") nižší ako **dT5_ON**, tepelné čerpadlo začne dodávať ohriatu vodu do zásobníka TÚV. Po prekročení minút **t_TBH_delay** sa zapne ponorný ohrievač. Ak T 5 dosiahne T 5stop, tepelné čerpadlo sa zastaví, no ponorný ohrievač ďalej beží, až kým T 5 nedosiahne T 5S + **dT5_TBH_OFF**.

S kratky:

T 5: teplota vody v zásobníkuTÚV

T 5S : nastavená teplota vody TÚV

T 5stop: prevádzkový limit teploty vody na výstupe v režime TÚV

T BH: ponorný ohrievač v zásobníku TÚV

V časti **T4DHWMAX** sa nastavuje teplota okolia, po prekročení ktorej nebude tepelné čerpadlo pracovať v režime TÚV. Maximálna hodnota **T4DHWMAX** je 43 °C, čo je horný prevádzkový limit teploty okolia v režime TÚV pre tepelné čerpadlo.

V časti **T4DHWMIN** sa nastavuje teplota okolia, pod ktorou nebude tepelné čerpadlo pracovať v režime TÚV. Minimálna hodnota **T4DHWMIN** je -25 °C, čo je dolný prevádzkový limit teploty okolia v režime TÚV pre tepelné čerpadlo.

Obrázok 3-7.7: T4DHWMAX a T4DHWMIN

Kúrenie TBH alebo AHS	Kúrenie tepelným čerpadlom	OFF	T4
T4DHWMIN	T4DH	WMAX	

S kratky:

T BH: ponorný ohrievač zásobníka TÚV

AHS : zdroj dodatočného ohrevu

HP: tepelné čerpadlo

V časti **t_INTERVAL_DHW** sa nastavuje oneskorenie reštartu kompresora v režime TÚV. Keď kompresor prestane pracovať, opätvne sa spustí až po uplynutí minimálne **t_INTERVAL_DHW** minút.

V časti **dT5_TBH_OFF** sa nastavuje rozdiel teplôt medzi nastavenou teplotou TÚV (T5S) a teplotou vody v zásobníku TÚV (T5), pod ktorým sa nepoužíva ponorný ohrievač. Keď T5 ≥ Min(T5S+dT5_TBH_OFF, 65°C), ponorný ohrievač je vypnutý.

V časti **T4_TBH_ON** sa nastavuje teplota okolia, po prekročení ktorej sa nebude používať ponorný ohrievač.

V časti t_TBH_DELAY sa nastavuje oneskorenie medzi spustením kompresora a zapnutím ponorného ohrievača.

V časti **T5S_DISINFECT** sa nastavuje cieľová teplota prevádzky dezinfekcie zásobníka TÚV. Upozornenie: počas prevádzky dezinfekcie (trvanie: **t_DI_MAX**) bude občas teplota teplej úžitkovej hodnoty v kohútikoch teplej vody rovná hodnote nastavenej pre **T5S_DI**.

V časti **t_DI_HIGHTEMP** sa nastavuje čas, ako dlho sa má udržiavať cieľová teplota prevádzky dezinfekcie zásobníka TÚV.

V časti **t_DI_MAX** sa nastavuje celkové trvanie prevádzky dezinfekcie zásobníka TÚV.

T5: teplota vody v zásobníku TÚV T5S: nastavená teplota vody TÚV

V časti **t_DHWHP_RESTRICT** sa nastavuje maximálny čas, počas ktorého bude tepelné čerpadlo bežať v režimoch vykurovania alebo chladenia priestoru pred prepnutím do režimu TÚV, ak existuje požiadavka na TÚV režim. V režime

vykurovania alebo chladenia priestoru bude tepelné čerpadlo k dispozícii pre režim TÚV buď hneď, ako sa dosiahnu nastavené teploty pre vykurovanie/chladenie priestoru (pozrite 3. časť, 7.5 "Ponuka COOL MODE SETTING" a 3. časť, 7.6 "Ponuka HEAT MODE SETTING"), alebo po uplynutí minút **t_DHWHP_MAX**.

V časti **t_DHWHP_MAX** sa nastavuje maximálny čas, počas ktorého bude tepelné čerpadlo bežať v režime TÚV pred prepnutím do režimu vykurovania alebo chladenia priestoru, ak existuje požiadavka na režim vykurovania/chladenia priestoru. V režime TÚV bude tepelné čerpadlo k dispozícii pre vykurovanie/chladenie priestoru buď hneď, ako teplota vody v zásobníku TÚV (T5) dosiahne nastavenú teplotu vody TÚV (T5S), alebo po uplynutí minút **t_DHWHP_MAX**.

Na obrázku 3-7.9 vidno účinky **t_DHWHP_MAX** a **t_DHWHP_RESTRICT**, keď je aktivovaná možnosť **DHW PRIORITY**. Tepelné čerpadlo spočiatku beží v režime TÚV. Po minútach **t_DHWHP_MAX** sa nedosiahla T5

V časti **PUMP_D TIMER** sa nastavuje, či bude používateľ môcť nastaviť čerpadlo TÚV (dodávka stavby) v režime TÚV. Pri inštaláciách s čerpadlom TÚV zvoľte ON, aby používateľ mohol nastaviť čas spustenia čerpadla.

V časti **PUMP_D RUNNING TIME** sa nastavuje, aký dlhý čas bude čerpadlo bežať v každom čase spustenia stanovenom používateľom na karte **DHW PUMP** v ponuke **DOMESTIC HOT WATER (DHW)**, keď je aktivovaná možnosť **TIMER RUNNING**.

V časti PUMP_D DISINFECT RUN sa nastavuje, či bude čerpadlo DHW (dodávka stavby) pracovať počas režimu dezinfekcie.

7.5 Ponuka COOL MODE SETTING

MENU > FOR SERVICEMAN > COOL MODE SETTING

2 COOL MODE SETTING	1/3	2 COOL MODE SETTING	2/3	2 COOL MODE SETTING	3/3
2.1 COOL MODE	YES	2.6 dTSC	2 °C	2.11 T4C2	25 °C
2.2 t_T4_FRESH_C	2.0HRS	2.7 t_INTERVAL_C	5MIN	2.12 ZONE1 C-EMISSION	FCU
2.3 T4CMAX	43°C	2.8 T1SetC1	10°C	2.13 ZONE2 C-EMISSION	FLH
2.4 T4CMIN	20°C	2.9 T1SetC2	16°C		
2.5 dT1SC	5°C	2.10 T4C1	35°C		
+ ADJUST	<₽	ADJUST		ADJUST	∢►

Obrázok 3-7.10: Ponuka COOL MODE SETTING

V časti COOL MODE SETTING treba nastaviť nasledujúce parametre.

COOL MODE umožňuje aktivovať a deaktivovať režim chladenia. Pre inštalácie s koncovými prvkami pre chladenie priestoru zvoľte **YES** na aktiváciu režimu chladenia. Pre inštalácie bez koncových prvkov pre chladenie priestoru zvoľte **NON** na deaktiváciu režimu chladenia.

V časti t_T4_FRESH_C sa nastavuje čas obnovy krivky teploty podnebia v modeli chladenia.

V časti **T4CMAX** sa nastavuje teplota okolia, po prekročení ktorej bude tepelné čerpadlo pracovať v režime chladenia s najnižšou frekvenciou kompresora. Maximálna hodnota **T4CMAX** je 46 °C, čo je horný prevádzkový limit teploty okolia v režime chladenia pre tepelné čerpadlo. Pozrite obrázok 3-7.11.

V časti **T4CMIN** sa nastavuje teplota okolia, pod ktorou nebude tepelné čerpadlo pracovať v režime chladenia. Minimálna hodnota **T4CMIN** je -5 °C, čo je dolný prevádzkový limit teploty okolia v režime chladenia pre tepelné čerpadlo. Pozrite c

prevádzkový limit teploty okolia v režime chladenia pre tepelné čerpadlo. Pozrite obrázok 3-7.11.

V časti **dT1SC** sa nastavuje rozdiel minimálnych teplôt medzi teplotou vody na výstupe tepelného čerpadla (T1) a nastavenou teplotou vody na výstupe tepelného čerpadla (T1S), pri ktorom tepelné čerpadlo dodáva ochladenú vodu do koncových prvkov pre chladenie priestoru. Keď T1 – T1S \geq dT1SC, tepelné čerpadlo dodáva ochladenú vodu do koncových prvkov pre chladenie priestoru, keď T1 \leq T1S, tepelné čerpadlo nedodáva ochladenú vodu do koncových prvkov pre chladenie priestoru.

Obrázok 3-7.11: T4CMAX, T4CMIN

Skratky: T4: teplota vonkajšieho prostredia

Obrázok 3-7.12: dT1SC

T1

Skratky:

T1: teplota vody na výstupe tepelného čerpadla
 T1S: nastavená teplota vody na výstupe tepelného čerpadla

V časti dTSC sa nastavuje rozdiel teplôt medzi aktuálnou teplotou miestnosti (Ta) a nastavenou teplotou miestnosti (TS), pri prekročení ktorého tepelné čerpadlo TS+dTSC dodáva ochladenú vodu do koncových prvkov pre chladenie priestoru. Keď Ta – TS ≥ _{Chladenie OFF} dTSC, tepelné čerpadlo dodáva ochladenú vodu do koncových prvkov pre chladenie

priestoru, keď Ta ≤ TS, tepelné čerpadlo nedodáva ochladenú vodu do koncových prvkov pre chladenie priestoru. Pozrite obrázok 3-7.13. dTSC je možné použiť iba vtedy, keď je zvolená možnosť YES pre ROOM TEMP v ponuke TEMP. TYPE SETTING. Pozrite časť 3, 7.8 "Ponuka TEMP. TYPE SETTING".

V časti t_INTERVAL_C sa nastavuje oneskorenie reštartu kompresora v režime chladenia. Keď kompresor prestane pracovať, opätovne sa spustí až po uplynutí minimálne t_INTERVAL_C minút.

V časti **T1SetC1** sa nastavuje teplota 1 automaticky nastavenej krivky pre režim chladenia.

V časti **T1SetC2** sa nastavuje teplota 2 automaticky nastavenej krivky pre režim chladenia.

V časti **T4C1** sa nastavuje teplota okolia 1 automaticky nastavenej krivky pre režim chladenia.

V časti T4C2 sa nastavuje teplota okolia 2 automaticky nastavenej krivky pre režim chladenia.

V časti **ZONE1 C-EMISSION** sa nastavuje typ emisií zóm1 pre režim chladenia.

V časti **ZONE2 C-EMISSION** sa nastavuje typ emisií zóm2 pre režim chladenia.

Ponuka HEAT MODE SETTING 7.6

MENU > FOR SERVICEMAN > HEAT MODE SETTING

3 HEAT MODE SETTING	1/3	3 HEAT MODE SETTING	2/3	3 HEAT MODE SETTING	3/3
3.1 HEAT MODE	YES	3.6 dTSH	2°C	3.11 T4H2	7°C
3.2 t_T4_FRESH_H	2.0HRS	3.7 t_INTERVAL_H	5MIN	3.12 ZONE1 H-EMISSION	RAD.
3.3 T4HMAX	16°C	3.8 T1SetH1	35°C	3.13 ZONE2 H-EMISSION	FLH
3.4 T4HMIN	-15°C	3.9 T1SetH2	28°C	3.14 t_DELAY_PUMP	2MIN
3.5 dT1SH	5°C	3.10 T4H1	-5°C		
♦ ADJUST	•	ADJUST		ADJUST	

Obrázok 3-7.14: Ponuka HEAT MODE SETTING

V časti **HEAT MODE SETTING** treba nastaviť nasledujúce parametre.

HEAT MODE umožňuje aktivovať a deaktivovať režim vykurovania.

V časti t_T4_FRESH_H sa nastavuje čas obnovy krivky teploty podnebia v režime vykurovania.

V časti T4HMAX sa nastavuje teplota okolia, po prekročení ktorej bude tepelné čerpadlo pracovať v režime vykurovania s najnižšou frekvenciou kompresora. Maximálna hodnota T4HMAX je 35 °C, čo je horný prevádzkový limit teploty okolia v režime vykurovania pre tepelné čerpadlo. Pozrite obrázok 3-7.15.

	Obrazok 3-7.15: T4HMAX, T4HMIN							
OFF		k	lúrenie	Kúrenie (Najnižšia frekvencia kompresora)				
	T4H	IMIN	T4HI	MAX 14				
kratkv [.]								

T4: teplota vonkajšieho prostredia

OPTIMUS PRO Mono

-Ta

Obrázok 3-7.13: dTSC

V časti **T4HMIN** sa nastavuje teplota okolia, pod ktorou nebude tepelné čerpadlo pracovať v režime vykurovania. Minimálna hodnota **T4CMIN** je -25 °C, čo je dolný prevádzkový limit teploty okolia v režime vykurovania pre tepelné čerpadlo. Pozrite obrázok 3-7.15.

V časti **dT1SC** sa nastavuje rozdiel teplôt medzi teplotou vody na výstupe tepelného čerpadla (T1) a nastavenou teplotou vody na výstupe tepelného čerpadla (T1S), pri ktorom tepelné čerpadlo dodáva zohriatu vodu do koncových prvkov pre vykurovanie priestoru.

Poznámka: Táto funkcia je dostupná, iba ak je aktivovaná možnosť ROOM TEMP.

V časti **dTSH** sa nastavuje rozdiel teplôt medzi aktuálnou teplotou miestnosti (Ta) a nastavenou teplotou miestnosti (TS), pri prekročení ktorého tepelné čerpadlo dodáva zohriatu vodu do koncových prvkov pre vykurovanie priestoru. Keď TS – Ta ≥ dTSH, tepelné čerpadlo dodáva zohriatu vodu do koncových prvkov pre vykurovanie priestoru, keď Ta ≥ TS, tepelné čerpadlo nedodáva zohriatu vodu do koncových prvkov pre vykurovanie priestoru. Pozrite obrázok 3-7.16. **dTSC** je možné použiť iba vtedy, keď je zvolená možnosť **YES** pre **ROOM TEMP** v ponuke **TEMP. TYPE SETTING**. Pozrite časť 3, 7.8 "Ponuka TEMP. TYPE SETTING".

V časti **t_INTERVAL_H** sa nastavuje oneskorenie reštartu kompresora v režime vykurovania. Keď kompresor prestane pracovať, opätovne sa spustí až po uplynutí minimálne **t_INTERVAL_H** minút.

V časti T1SetH1 sa nastavuje teplota 1 automaticky nastavenej krivky pre režim vykurovania.

V časti T1SetH2 sa nastavuje teplota 2 automaticky nastavenej krivky pre režim vykurovania.

V časti **T4H1** sa nastavuje teplota okolia 1 automaticky nastavenej krivky pre režim vykurovania.

V časti T4H2 sa nastavuje teplota okolia 2 automaticky nastavenej krivky pre režim vykurovania.

V časti **ZONE1 H-EMISSION** sa nastavuje typ emisií pre režim vykurovania.

V časti ZONE2 H-EMISSION sa nastavuje typ emisií pre režim vykurovania.

7.7 Ponuka AUTO MODE SETTING

MENU > FOR SERVICEMAN > AUTO MODE SETTING

V časti AUTO MODE SETTING treba nastaviť nasledujúce parametre.

V časti **T4AUTOCMIN** sa nastavuje teplota okolia, pod ktorou nebude tepelné čerpadlo dodávať v automatickom režime ochladenú vodu na chladenie priestoru. Pozrite obrázok 3-7.18. Obrázok 3-7.17: Ponuka AUTO MODE SETTING

4 AUTO. MODE SETTING	
4.1 T4AUTOCMIN	25°C
4.2 T4AUTOHMAX	17°C
ADJUST	

V časti **T4AUTOHMAX** sa nastavuje teplota okolia, po prekročení ktorej nebude tepelné čerpadlo dodávať v automatickom režime zohriatu vodu na vykurovanie priestoru. Pozrite obrázok 3-7.18.

Skratky: HP: tepelné čerpadlo AHS: zdroj dodatočného ohrevu IBH: záložný elektrický ohrievač T4CMAX: teplota okolia, po prekročení ktorej nebude tepelné čerpadlo pracovať v režime chladenia T4HMIN: teplota okolia, pod ktorou nebude tepelné čerpadlo pracovať v režime vykurovania

7.8 Ponuka TEMP. TYPE SETTING MENU > FOR SERVICEMAN > TEMP. TYPE SETTING

Ponuka TEMP. TYPE SETTING sa používa pri výbere, či sa má používať teplota vody v prívodnom potrubí alebo priestoru na riadenie zapnutia/vypnutia tepelného čerpadla.

Keď je aktivovaná možnosť ROOM TEMP., cieľová teplota vody v prívodnom potrubí sa vypočíta z kriviek súvisiacich s podnebím (pozrite "9 Krivky súvisiace s podnebím").

Pri inštaláciách bez izbových termostatov je možné riadiť režim vykurovania a chladenia niektorým z týchto dvoch spôsobov:

- iba podľa vody na výstupe z OPTIMUS PRO Mono,
- iba podľa teploty miestnosti zistenej zabudovaným snímačom teploty v používateľskom rozhraní OPTIMUS PRO Split.

V časti **WATER FLOW TEMP.** sa nastavuje, či sa režim vykurovania/chladenia priestoru riadi podľa teploty vody na výstupe z OPTIMUS PRO Mono. Ak sa zvolí **YES**, používateľ môže nastaviť teplotu vody na výstupe jednotky OPTIMUS PRO Mono cez hlavnú obrazovku používateľského rozhrania.

Obrázok 3-7.20: Nastavenie iba WATER FLOW TEMP na YES

V časti **ROOM TEMP.** sa nastavuje, či sa režimy vykurovania/chladenia riadia podľa teploty miestnosti zistenej snímačom teploty používaným v používateľskom rozhraní OPTIMUS PRO Mono. Ak sa zvolí **YES**, používateľ môže nastaviť teplotu miestnosti cez hlavnú obrazovku používateľského rozhrania bez ohľadu na nastavenie **WATER FLOW TEMP.**

V časti **DOUBLE ZONE** sa nastavuje, či budú k dispozícii dve zóny.

Ak je nastavená možnosť WATER FLOW TEMP. a ROOM TEMP. na YES a

zároveň DOUBLE ZONE na NON alebo YES, zobrazia sa nasledujúce stránky. V tomto prípade je pre zónu 1 nastavená hodnota T1S, pre zónu 2 je to TS. (Príslušná hodnota TIS2 sa vypočíta podľa kriviek súvisiacich s podnebím.) Obrázok 3-7.22: DOUBLE ZONE na NON alebo YES

Domovská stránka (zóna 1)

Dodatočná stránka (zóna 2) (Dvojitá zóna je aktívna.)

Ak je nastavená možnosť DOUBLE ZONE na YES a ROOM TEMP. na NON a zároveň WATER FLOW TEMP. na YES alebo NON, zobrazia sa nasledujúce stránky. V tomto prípade je pre zónu 1 nastavená hodnota T1S, pre zónu 2 je to T1S2.

Obrázok 3-7.19: Ponuka TEMP. TYPE SETTING

Obrázok 3-7.23: DOUBLE ZONE nastavené na YES a nastavte ROOM TEMP. na NON a zároveň nastavte WATER FLOW TEMP. na YES alebo NON

Domovská stránka (zóna 1)

Dodatočná stránka (zóna 2)

Ak je nastavená možnosť DOUBLE ZONE a ROOM TEMP. na YES a zároveň WATER FLOW TEMP. na YES alebo NON, zobrazí sa nasledujúca stránka. V tomto prípade je pre zónu 1 nastavená hodnota T1S, pre zónu 2 je to TS. (Príslušná hodnota TIS2 sa vypočíta podľa kriviek súvisiacich s podnebím.)

Obrázok 3-7.24: DOUBLE ZONE a nastavte ROOM TEMP. na YES a zároveň nastavte WATER FLOW TEMP. na YES alebo NON

Domovská stránka (zóna 1)

7.9 Ponuka ROOM THERMOSTAT MENU > FOR SERVICEMAN > ROOM THERMOSTAT

Režim vykurovania/chladenia priestoru podľa teploty vody na výstupe z jednotky OPTIMUS PRO Mono a/alebo meraním teploty miestnosti snímačom teploty používaným v používateľskom rozhraní OPTIMUS PRO Mono je možné nahradiť inštaláciou samostatného izbového termostatu, ktorý sa bude používať na riadenie režimov vykurovania/chladenia priestoru.

V časti ROOM THERMOSTAT treba nastaviť nasledujúce parametre.

V časti **ROOM THERMOSTAT** sa nastavuje, či sú nainštalované izbové termostaty. Pre inštalácie s izbovými termostatmi zvoľte **YES**. Pre inštalácie bez izbových termostatov zvoľte **NON**.

ROOM THERMOSTAT = NON: nie je k dispozícii izbový termostat.

ROOM THERMOSTAT = MODE SET: izbový termostat môže jednotlivo riadiť vykurovanie a chladenie.

ROOM THERMOSTAT=ONE ZONE: izbový termostat poskytuje jednotke spínací signál.

ROOM THERMOSTAT=DOUBLE ZONE: k vnútornej jednotke sú pripojené dva izbové termostaty.

Obrázok 3-7.25: Ponuka ROOM THERMOSTAT

6 ROOM THERMOSTAT 6.1 ROOM THERMOSTAT	NON
ADJUST	

7.10 Ponuka OTHER HEATING SOURCE7.10.1 Prehľad ponuky OTHER HEATING SOURCEMENU > FOR SERVICEMAN > OTHER HEATING SOURCE

Obrázok 3-7.26: Ponuka OTHER HEATING SOURCE

7 OTHER HEATING SOURCE 1/2	2)[7 OTHER HEATING	SOURCE 2/2
7.1 dT1_IBH_ON 5°0		7.6 T4_AHS_ON	<mark>-5</mark> ℃
7.2 t_IBH_DELAY 30MIN	1	7.7 IBH LOCATE	PIPE LOOP
7.3 T4_IBH_ON -5°C	5	7.8 P_IBH1	0.0kW
7.4 dT1_AHS_ON 5°C) [、	7.9 P_IBH2	0.0kW
7.5 t_AHS_DELAY 30MIN	1	7.10 P_TBH	2.0kW
ADJUST 🔹		ADJUST	

V časti OTHER HEATING SOURCE treba nastaviť nasledujúce parametre. Záložný elektrický ohrievač je voliteľný.

V časti **dT1_IBH_ON** sa nastavuje rozdiel teplôt medzi nastavenou teplotou vody na výstupe tepelného čerpadla (T1S) a teplotou vody na výstupe tepelného čerpadla (T1), pri prekročení ktorého budú zapnuté ohrevné prvky záložného elektrického ohrievača. Keď T1S - T1 \geq dT1_IBH_ON, záložný elektrický ohrievač bude zapnutý (pri modeloch, kde má záložný elektrický ohrievač jednoduchú funkciu riadenia zapnutia/vypnutia).

V časti t_TBH_DELAY sa nastavuje oneskorenie medzi spustením kompresora a zapnutím záložného elektrického ohrievača.

V časti **T4_IBH_ON** sa nastavuje teplota okolia, pod ktorou sa nebude používať záložný elektrický ohrievač. Ak je teplota okolia vyššia ako **T4_IBH_ON**, záložný elektrický ohrievač sa nebude používať. Vzťah medzi prevádzkou záložného ohrievača a teplotou okolia je zobrazený na obrázku 3-7.22.

V časti **dT1_AHS_ON** sa nastavuje rozdiel teplôt medzi nastavenou teplotou vody na výstupe tepelného čerpadla (T1S) a teplotou vody na výstupe tepelného čerpadla (T1), pri prekročení ktorého bude zapnutý zdroj dodatočného ohrevu. Keď T1S - T1 ≥ dT1_AHS_ON, zdroj dodatočného ohrevu bude zapnutý.

V časti **t_AHS_DELAY** sa nastavuje oneskorenie medzi spustením kompresora a zapnutím zdroja dodatočného ohrevu.

V časti **T4_AHS_ON** sa nastavuje teplota okolia, pod ktorou sa nebude používať zdroj dodatočného ohrevu. Ak je teplota okolia vyššia ako **T4_AHS_ON**, zdroj dodatočného ohrevu sa nebude používať. Vzťah medzi prevádzkou zdroja dodatočného ohrevu a teplotou okolia je zobrazený na nasledujúcom obrázku.

IBH LOCATE znamená, že pre rozvody vykurovania je nainštalovaný IBH. V časti P_IBH1, P_IBH2 sa nastavuje výkon vykurovania IBH a v P_TBH výkon vykurovania TBH, ktorá sa používa na štatistiku spotreby energie.

7.11 Ponuka HOLIDAY AWAY SETTING MENU > FOR SERVICEMAN > HOLIDAY AWAY SETTING

Nastavenia v ponuke **HOLIDAY AWAY SETTING** umožňujú nastaviť teplotu vody vo vratnom potrubí, aby nezamrzla voda v potrubí, keď ste v chladnom období mimo domu. V časti **HOLIDAY AWAY SETTING** treba nastaviť nasledujúce parametre.

V časti **T1S_H.A._H** sa nastavuje teplota vody na výstupe tepelného čerpadla pre režim vykurovania priestoru v režime holiday away.

V časti **T5S_H.M._DHW** sa nastavuje teplota vody na výstupe tepelného čerpadla pre režim TÚV v režime holiday aw ay.

7.12 Ponuka SERVICE CALL

MENU > FOR SERVICEMAN > SERVICE CALL

V časti SERVICE CALL je možné nastaviť nasledujúce parametre.

Do PHONE NO. a MOBILE NO. je možné zadať kontaktné čísla popredajných služieb.
Ak sú tieto čísla zadané, zobrazia sa používateľom cez MENU > FOR SERVICEMAN >
SERVICE CALL.

Šípkami ▼ ▲ zvolíte číselnú hodnotu. Telefónne čísla môžu mať maximálne 14 číslic.

Čierny obdĺžnik, ktorý sa nachádza medzi číslicami 0 a 9, keď sa presúvate pomocou

▼ ▲, sa v zobrazení pre používateľov **MENU** > **FOR SERVICEMAN** > **SERVICE CALL** zmení na medzeru a dá sa použiť pre telefónne čísla, ktoré majú menej ako 14 číslic.

7.13 RESTORE FACTORY SETTINGS MENU > FOR SERVICEMAN > RESTORE FACTORY SETTINGS

Možnosť **RESTORE FACTORY SETTINGS** sa využíva na obnovenie továrenských nastavení pre všetky parametre nastavené v používateľskom rozhraní.

Keď zvolíte YES, spustí sa obnova všetkých nastavení na továrenské a postup sa zobrazuje v percentách.

10 RESTORE FAC	TORY SETTINGS	10 RESTORE FACTORY SETTINGS
All the settings will come back to factory default. Do you want to restore factory settings?		Please wait 5%
NO	YES	

Obrázok 3-7.31: Obrazovky RESTORE FACTORY SETTINGS

Obrázok 3-7.29: Ponuka HOLIDAY AWAY SETTING

8 HOLIDAY AWAY SETTING	
8.1 T1S_H.AH	20°C
8.2 T5S_H.ADHW	20°C
ADJUST	

Obrázok 3-7.30:Ponuka SERVICE CALL

9 SERVICE CALL SETTING	
PHONE NO. ********************	
MOBILE NO. ******************	

7.14 TEST RUN 7.14.1 Prehľad ponuky TEST RUN MENU > FOR SERVICEMAN > TEST RUN

Možnosť **TEST RUN** umožňuje skontrolovať, či správne fungujú ventily, odvzdušňovanie, obehové čerpadlo, režim chladenia priestoru, režim vykurovania priestoru a režim TÚV.

Obrázok 3-7.32: Úvodná obrazovka TEST RUN a ponuka TEST RUN

Počas testovacej prevádzky sú všetky tlačidlá okrem OK neplatné. Ak si prajete testovaciu prevádzku vypnúť, stlačte OK. Ak je napríklad jednotka v režime odvzdušňovania, po stlačení OK sa zobrazí táto stránka:

11 TEST RUN	
Do you want to turi (AIR PURGE)funct	n off the test run ion?
NO	YES

Obrázok 3-7.33: Obrazovka na opustenie odvzdušňovania

7.14.2 Ponuka POINT CHECK MENU > FOR SERVICEMAN > TEST RUN > POINT CHECK

Ponuka **POINT CHECK** slúži na kontrolu fungovania jednotlivých komponentov. Ku komponentom, ktoré si prajete skontrolovať, sa dostanete pomocou ▼▲. Stav zapnutia/vypnutia komponentu môžete prepínať stlačením ON/OFF. Ak sa ventil nezapne/nevypne pri zmene stavu zapnutia/vypnutia alebo ak čerpadlo/ohrievač po zapnutí nefunguje, skontrolujte, či je komponent pripojený k hlavnej PCB hydraulického systému.

Obrázok 3-7.34:	Ponuka	POINT	CHECK
-----------------	--------	-------	-------

11 TEST RUN	1/2	11 TEST RUN	2/2
3WAY-VALVE 1	OFF	PUMPSOLAR	OFF
3WAY-VALVE 2	OFF	PUMPDHW	OFF
PUMP I	OFF	INNER BACKUP HEATER	OFF
PUMP O	OFF	TANK HEATER	OFF
PUMP C	OFF	3-WAY VALVE 3	OFF
ON/OFF	ŧ		Ð

7.14.3 Prevádzka AIR PURGE

MENU > FOR SERVICEMAN > TEST RUN > AIR PURGE

Keď je montáž hotová, je dôležité spustiť funkciu odvzdušňovania, aby sa odstránil akýkoľvek vzduch, ktorý sa môže nachádzať vo vodovodnom potrubí a ktorý môže počas prevádzky spôsobiť poruchy.

Prevádzka **AIR PURGE** sa používa na odstránenie vzduchu z vodného okruhu. Pred spustením režimu AIR PURGE zabezpečte, aby bol odvzdušňovací ventil otvorený. Keď sa spustí odvzdušňovanie, otvorí sa ventil SV1 a zatvorí sa ventil SV2. O 60 sekúnd bude 10 minút pracovať v jednotke čerpadlo (PUMPI) a v tomto čase nebude fungovať prietokový spínač. Po zastavení čerpadla sa zatvorí ventil SV1 a otvorí sa ventil SV2. O 60 sekúnd bude pracovať PUMPI a PUMPO, až kým nedostanú ďalší príkaz. Ak sa počas prevádzky odvzdušňovania zobrazí nejaký chybový kód, treba preskúmať príčinu. Pozrite časť 3, 10 "Tabuľka chybových kódov".

7.14.4 Prevádzka CIRCULATION PUMP RUNNING MENU > FOR SERVICEMAN > TEST RUN > CIRCULATION PUMP RUNNING

Prevádzka **CIRCULATION PUMP RUNNING** slúži na kontrolu fungovania obehového čerpadla. Keď sa prevádzka CIRCULATION PUMP RUNNING spustí, všetky bežiace komponenty sa zastavia. O 60 sekúnd sa otvorí 3-cestný ventil a 3-cestný sa zatvorí. Po ďalších 60 sekundách sa spustí PUMPI. O 30 sekúnd, keď prietokový spínač

deteguje normálny prietok vody, PUMPI bude pracovať 3 minúty. Keď sa čerpadlo zastaví na 60 s, zatvorí sa 3-cestný ventil a otvorí sa 3-cestný ventil. O 60 s bude pracovať aj PUMPI, aj PUMPO. Po ďalších 2 minútach začne prietokový spínač kontrolovať prietok. Ak je rýchlosť prietoku vody dostatočná, PUMPI a PUMPO budú pracovať, až kým nedostanú ďalší príkaz. Ak je počas akéhokoľvek 15-sekundového úseku rýchlosť prietoku vody nedostatočná, PUMPI a PUMPO prestanú pracovať a zobrazí sa chybový kód E8. Pozrite časť 3, 10 "Tabuľka chybových kódov".

7.14.5 Prevdzka COOL MODE RUNNING MENU > FOR SERVICEMAN > TEST RUN > COOL MODE RUNNING

Prevádzka **COOL MODE RUNNING** slúži na kontrolu fungovania systému v režime chladenia priestoru.

Počas prevádzky **COOL MODE RUNNING** je nastavená teplota vody na výstupe jednotky OPTIMUS PRO Mono 7 °C. Aktuálna teplota vody na výstupe sa zobrazuje v používateľskom rozhraní. Jednotka pracuje, až kým teplota vody na výstupe neklesne na stanovenú teplotu alebo kým nedostane ďalší príkaz.

Ak sa počas prevádzky COOL MODE RUNNING zobrazí nejaký chybový kód, treba preskúmať príčinu. Pozrite časť 3, 10 "Tabuľka chybových kódov".

Obrázok 3-7.35: Prevádzka AIR PURGE

11 TEST RUN	
Test run is on. Air purge is on.	

Obrázok 3-7.3	5: Obrazovka	CIRCULATION	PUMP	RUNNING

11 TEST RUN	
Test run is on. Circulated pump is on.	

Obrázok 3-7.37: Obrazovka COOL MODE RUNNING

11 TEST RUN
Test run is on. Cool mode is on. Leaving water temperature is 15°C.

7.14.6 Prevdzka HEAT MODE RUNNING

Prevádzka **HEAT MODE RUNNING** slúži na kontrolu fungovania systému v režime vykurovania priestoru.

Počas prevádzky **HEAT MODE RUNNING** je nastavená teplota vody na výstupe jednotky OPTIMUS PRO Split 35 °C. Aktuálna teplota vody na výstupe sa zobrazuje v používateľskom rozhraní. Keď sa spustí prevádzka **HEAT MODE RUNNING**, tepelné čerpadlo najprv beží 10 minút.

Po 10 minútach:

- Pri systémoch s nainštalovaným pomocným zdrojom tepla (AHS) sa AHS spustí a beží 10 minút (kým tepelné čerpadlo stále pracuje). Potom sa AHS zastaví a tepelné čerpadlo pracuje ďalej, až kým teplota vody nestúpne na stanovenú teplotu alebo kým sa prevádzka HEAT MODE RUNNING nezruší stlačením **OK**.
- Pri systémoch so záložným elektrickým ohrievačom bude zapnutý záložný elektrický ohrievač (pri modeloch, kde má záložný ohrievač jednoduchú funkciu riadenia zapnutia/vypnutia). O 3 minúty sa záložný elektrický ohrievač vypne.
 Tepelné čerpadlo potom bude pracovať, až kým teplota vody nestúpne na stanovenú teplotu alebo kým nedostane ďalší príkaz.
- Pri systémoch bez pomocného zdroja tepla (AHS) bude tepelné čerpadlo bude pracovať, až kým teplota vody nestúpne na stanovenú teplotu alebo kým nedostane ďalší príkaz.

Ak sa počas prevádzky COOL MODE R UNNING zobrazí nejaký chybový kód, treba preskúmať príčinu. Pozrite časť 3, 8.2 "Tabuľka chybových kódov".

7.14.7 Prevdzka DHW MODE RUNNING

Prevádzka DHW MODE RUNNING slúži na kontrolu fungovania systému v režime TÚV

Počas prevádzky **DHW MODE RUNNING** je stanovená teplota TÚV55 °C. Pri systémoch s nainštalovanou podporou ohrevu v zásobníku sa podpora ohrevu zapne po 10minútach chodu tepelného čerpadla. Podpora ohrevu v zásobníku sa o 3 minúty vypne a čerpadlo bude pracovať, až kým teplota vody nestúpne na stanovenú teplotu alebo kým **nedostane ďalší príkaz.**

Obrázok 3-7.39:	Obrazovka	DHW N	10DE I	RUNNING

11 TEST RUN
Test run is on. DHW mode is on. Water flow temper. is 45°C Water tank temper. is 30°C

Obrázok 3-7.38: Obrazovka HEAT MODE RUNNING

11 TEST RUN
Test run is on. Heat mode is on. Leaving water temperature is 15°C.

7.15 SPECIAL FUNCTION 7.15.1 Prehľad ponuky SPECIAL FUNCTION MENU > FOR SERVICEMAN > SPECIAL FUNCTION

Možnosť **SPECIAL FUNCTION** sa používa na predhriatie podlahy a jej vysušenie po ukončení montáže alebo pri prvom spustení jednotky, alebo po opakovanom spustení po dlhom čase vypnutia.

7.15.2 PREHEATING FOR FLOOR MENU > FOR SERVICEMAN > SPECIAL FUNCTION > PREHEATING FOR FLOOR

Ak sa na podlahe nachádza veľké množstvo vody pred ohrevom podlahy, podlaha sa môže počas vykurovania zvlniť alebo prasknúť. Na ochranu podlahy je nutné podlahu vysušiť. Počas tohto procesu treba teplotu zvyšovať postupne.

Δ

Pri prvej prevádzke jednotky sa môže vo vodovodnom systéme ešte nachádzať vzduch, čo môže viesť počas prevádzky k nesprávnemu fungovaniu. Na odstránenie vzduchu treba spustiť funkciu odvzdušňovania (dbajte na to, aby bol odvzdušňovací ventil otvorený).

V časti **T1S** sa určuje nastavená teplota vody na výstupe tepelného čerpadla pre režim PREHEATING FOR FLOOR.

V časti **t_fristH** sa nastavuje trvanie režimu PREHEATING FOR FLOOR.

Prevádzka jednotky počas režimu PREHEATING FOR FLOOR je zobrazená na obrázku 3-7.37.

	Obrázok 3-7.40: Po	nuka Special function
12 SPECIAL FUNCTION		12 SPECIAL FUNCTION
CTIVE THE SETTINGS AND ACTIVE THE		12.1 PREHEATING FOR FLOOR
SPECIAL FUNCTION"?		12.2 FLOOR DRYING UP
NO YES		
		ENTER 🗧

Obrázok 3-7.41: Ponuka Preheating for floor

12.1 PREHEATING FOR FLOOR			
T1S	30°C		
t_fristFH	72 HOURS		
ENTER	EXIT		
ADJUST			

t_interval_H: oneskorenie reštartu kompresora v režime vykurovania priestoru (Pozrite časť 3, 8.6 "Ponuka HEAT MODE SETTING".)

Počas prevádzky PREHEATING FOR FLOOR sa v používateľskom rozhraní zobrazuje, koľko minút prevádzka beží a aká je teplota vody na výstupe tepelného čerpadla. Počas PREHEATING FOR FLOOR sú deaktivované všetky tlačidlá okrem **OK**. Ak si prajete odísť z prevádzky PREHEATING FOR FLOOR, stlačte **OK** a potom vo výzve stlačte **YES**. Pozrite obrázok 3-7.38.

Obrázok 3-7.43: Obrazovky Preheating for floor

7.15.3 FLOOR DRYING UP MENU > FOR SERVICEMAN > SPECIAL FUNCTION > FLOOR DRYING UP

Pri práve nainštalovaných podpodlahových vykurovacích systémoch je možné použiť režim FLOOR DRYING UP na odstránenie vlhkosti z podlahy a pod ňou, aby sa predišlo jej zvlneniu alebo prasknutiu počas prevádzky podlahového vykurovania. Prevádzka FLOOR DRYING UP sa skladá z troch fáz:

- 1. fáza: postupný nárast teploty z počiatočných 25 °C po maximálnu teplotu
- 2. fáza: udržiavanie maximálnej teploty
- 3. fáza: postupný pokles teploty z maximálnej teploty na 45 °C

V časti WARM UP TIME(t_DRYUP)sa nastavuje trvanie 1. fázy.

V časti **KEEP TIME(t_HIGHPEAK)**sa nastavuje trvanie 2. fázy.

TEMP. DOWN TIME(t_DRYDOWN) je trvanie 3. fázy.

V časti **PEAK TEMP.(T_DRYPEAK)** sa nastavuje teplota vvody na výstupe tepelného čerpadla pre 2. fázu.

V časti START TIME sa nastavuje čas spustenia prevádzky FLOOR DRYING UP.

V časti START DATE sa nastavuje dátum spustenia prevádzky FLOOR DRYING UP.

Stanovená teplota vody na výstupe tepelného čerpadla počas sušenia podlahy je zobrazená na obrázku 3-7.40.

Počas prevádzky FLOOR DRYING UP sú deaktivované všetky tlačidlá okrem **OK**. Ak si prajete odísť z prevádzky FLOOR DRYING UP, stlačte **OK** a potom vo výzve stlačte **YES**.

Poznámka: V prípade poruchy tepelného čerpadla bude režim FLOOR DRYING UP pokračovať, ak je dostupný záložný elektrický ohrievač a/alebo zdroj dodatočného ohrevu, ktorý je nakonfigurovaný, aby podporoval režim vykurovania priestoru.

Obrázok 3-7.44: Ponuka FLOOR DRYING UP

7.16 AUTO RESTART MENU > FOR SERVICEMAN > AUTO RESTART

V časti **AUTO RESTART** sa nastavuje, či jednotka znovu prevezme nastavenia z používateľského rozhrania, keď sa po výpadku napájania znovu obnoví napájanie. Automatický reštart aktivujete pomocou **YES** a deaktivujete výberom **NON**.

Ak je aktivovaná funkcia automatického reštartu, jednotka po obnove napájania znovu prevezme nastavenia z používateľského rozhrania spred výpadku napájania. Ak je funkcia automatického reštartu deaktivovaná, jednotka sa po obnove napájania automaticky nespustí.

7.17 POWER INPUT LIMITATION MENU > FOR SERVICEMAN > POWER INPUT LIMITATION

V časti **POWER INPUT LIMITATION** sa nastavuje typ obmedzenia vstupného výkonu a rozsah nastavenia je 0–8. Ak bude jednotka fungovať pri vyššom vstupnom výkone, je potrebné zvoliť hodnotu 0. Ak bude jednotka pracovať pri nižšom vstupnom výkone, treba zvoliť hodnotu 1 – 8, čím sa zníži vstupný aj výstupný výkon.

Obrázok 3-7.49: Hodnota obmedzenia (jednotka: A)

Model Č.	0	1	2	3	4	5	6	7	8
18 kW	18	18	17	16	15	14	13	12,5	12
22 kW	21	21	20	19	18	17	16	15	14
26 kW	24	24	23	22	21	20	19	18	17
30 kW	28	28	27	26	25	24	23	22	21

7.18 INPUT DEFINE

MENU > FOR SERVICEMAN > INPUT DEFINE

Obrázok 3-7.50: INPUT DEFINE

15 INPUT DEFINE		15 INPUT DEFINE	
15.1 M1M2	REMOTE	15.6 ⊺a	HMI
15.2 SMART GRID	NON	15.7 Ta-adj	-2°C
15.3 Tw2	NON	15.8 SOLAR INPUT	NON
15.4 Tbt1	NON	15.9 F-PIPE LENGTH	<10m
15.5 Tbt2	NON	15.10 RT/Ta_PCB	NON
ADJUST		ADJUST	

15 INPUT DEFINE	
15.11 PUMP_I SILENT MODE	NON
15.12 DFT1/DFT2	DEFROST
ADJUST	

V časti INPUT DEFINE sa nastavujú snímače a funkcie pre inštaláciu.

V časti M1M2 sa nastavuje riadiaca funkcia M1M2 pre vzdialené zapnutie/vypnutie jednotky alebo AHS, alebo TBH.

V časti SMART GRID sa nastavuje, či bude riadiaci signál SMART GRID pripojený k PCB hydraulického systému.

V časti Tw2 sa nastavuje, či bude v inštalácii prítomný snímač T1b.

V časti **Tbt1** sa nastavuje, či sú vo vyvažovacej nádobe nainštalované snímače teploty vyvažovacej nádoby. (snímač Tbt1, individuálne zakúpený; Tbt2, rezervovaný)

V časti **Ta**sa nastavuje typ pripojenia snímača Ta (HMI: Ta na ovládači s káblom; IDU: Ta pripojený na PCB hydraulického systému). **Ta-adj** je opravná hodnota pre Ta.

Obrázok 3-7.47: Ponuka AUTO RESTART

IS N
S
N
-

Obrázok	3-7.48:	Ponuka	POWER
	NITATION		

	_			
1	(a a			1 18 417
	14	POWER	INPUT	

14 POWER INPUT LIMITATION	
14.1 POWER INPUT LIMITATION	0
ADJUST	

V časti **SOLAR INPUT** sa nastavuje, či bude solárny riadiaci signál pripojený k PCB hydraulického systému. (0 = NON; 1 = CN18; Tsolar 2 = CN11SL1SL2)

V časti F-PIPE LENGTH sa nastavuje dĺža potrubia na chladivo medzi vonkajšou a vnútornou jednotkou.

V časti RT/Ta_PCB sa nastavuje, či je M-kit platný.

Pomocou **Pump sent mode** je možné znížiť maximálny výstup vodného čerpadla o 5 %, aby sa znížila hlučnosť tepelného čerpadla.

V časti **DFT1/DFT2** sa nastavujú porty DF T1 a DF T2 hydro modulu na DEF ROST alebo Alarm. (F unkcia ALARM je platná iba so softvérom IDU s verziou vyššou ako V99.)

7.19 CASCADE SET

MENU > FOR SERVICEMAN > CASCADE SET

Obrázok 3-7.51:CASCADE SET

16 CASCADE SET	
16.1 PER_START	20%
16.2 TIME_ADJUST	5 MIN
16.3 ADDRESS RESET	FF
ADJUST	

PER_START nastavuje percento spustenia viacerých jednotiek pri prvom spustení po zapnutí. Napríklad:

Celkový	PER_START	Spustené
počet		jednotky
jednotiek		
6	50%	3
6	30%	2

TIME_ADJUST nastavuje rozhodovacie obdobie na pripočítanie alebo odčítanie jednotiek

ADDRESS RESET resetuje kód adresy jednotky. ("FF" je neplatný kód adresy.) Program obvykle nastaví adresu každej jednotky automaticky; túto funkciu musíme použiť len vtedy, keď jednotka stratí adresu a zobrazí sa chybový kód Hd. Po nastavení adresy musíte stlačením tlačidla "UNLOCK" potvrdiť svoju voľbu.

7.20 HMI ADDRESS SET

MENU > FOR SERVICEMAN > HMI ADDRESS SET

Obrázok 3-7.52: HMI ADDRESS SET

17 HMI ADDRESS SET	
17.1 HMI SET	MASTER
17.2 HMI ADDRESS FOR BMS	1
17.3 STOP BIT	1

V časti HMI SET sa nastavuje, či je ovládač s káblom master alebo slave. (0 = MASTER, 1 = SLAVE)

Keďa HMI SET nastaví ako SLAVE, ovládač môže iba prepínať prevádzkový režim, zapínať alebo vypínať, nastaviť teplotu, ale nemôže nastaviť ďalšie parametre a funkcie.

V časti HMI ADDRESS FOR BMS sa nastavuje kód adresy pre BMS. (Platí iba pre master.)

STOP BIT ovládača s káblom a softvéru nadradeného počítača musia byť rovnaké, aby sa zabezpečila spoľahlivosť transformácie údajov.

8 Prevádzkové parametre (Operation parameter)

MENU > OPERATION PARAMETER

Táto ponuka je určená pre technika alebo servisného technika, aby skontrolovali prevádzkové parametre. Prevádzkové parametre sa nachádzajú na deviatich stránkach, ako je uvedené nižšie.

Obrázok 3-9.1: Operation parameter

#01
1
COOL
ON
OFF
OFF
ON
1/9 🖨

OPERATION PARAMETER	#01
PUMP-O	OFF
PUMP-C	OFF
PUMP-S	OFF
PUMP-D	OFF
PIPE BACKUP HEATER	OFF
TANK BACKUP HEATER	ON
▲ ADDRESS	2/9 🖨

OPERATION PARAMETER	#01
GAS BOILER	OFF
T1 LEAVING WATER TEMP.	35°C
WATER FLOW	1.72m3/h
HEAT PUMP CAPACTIY	11.52kW
POWER CONSUM.	1000kWh
Ta ROOM TEMP	25°C
▲ ADDRESS	3/9 🖨

OPERATION PARAMETER	#01
T5 WATER TANK TEMP.	53°C
Tw2 CIRCUIT2 WATER TEMP.	35°C
TIS' C1 CLIMATE CURVE TEMP	P. 35°C
TIS2' C2 CLIMATE CURVE TEM	P. 35°C
TW_O PLATE W-OUTLET TEMP	P. 35℃
TW_I PLATE W-OUTLET TEMP.	30°C
▲ ADDRESS	4/9 🖨

OPERATION PARAMETER	#01
Tbt1 BUFFERTANK_UP TEMP.	35°C
Tbt2 BUFFERTANK_LOW TEMP.	35°C
Tsolar	25°C
IDU SOFTWARE 01-09-20	19V01
ADDRESS 5	5/9 🖨

OPERATION PARAMETER	#01
FAN SPEED 60	0R/MIN
IDU TARGET FREQUENCY	46Hz
FREQUENCY LIMITED TYPE	5
SUPPLY VOLTAGE	230V
DC GENERATRIX VOLTAGE	420V
DC GENERATRIX CURRENT	18A
▲ ADDRESS	7/9 🖨

OPERATION PARAMETER	#01
TW_O PLATE W-OUTLET TEMP	P. 35℃
TW_I PLATE W-INLET TEMP.	30°C
T2 PLATE F-OUT TEMP.	35°C
T2B PLATE F-IN TEMP.	35°C
Th COMP. SUCTION TEMP.	5°C
Tp COMP. DISCHARGE TEMP.	75°C
▲ ADDRESS	8/9 🖨

OPERATION PARAMETER	#01
ODU MODEL	6kW
COMP.CURRENT	12A
COMP.FREQENCY	24Hz
COMP.RUN TIME	54 MIN
COMP.TOTAL RUN TIME	1000Hrs
EXPANSION VALVE	200P
▲ ADDRESS	6/9 🖨

OPERATION PARAMET	TER	#01
T3 OUTDOOR EXCHAP	RGE TEMP.	5°C
T4 OUTDOOR AIR TEM	1P.	5°C
TF MODULE TEMP.	5	5°C
P1 COMP. PRESSURE	2300	OkPa
ODU SOFTWARE	01-09-201	8V01
HMI SOFTWARE	01-09-2018	3V01
▲ ADDRESS	9/9	9 🖨

9 Pokyny na konfiguráciu siete

Používateľské rozhranie poskytuje inteligentné riadenie využitím zabudovaného Wi-Fi modulu, ktorý dostáva riadiaci signál z aplikácie. Pred pripojením WLAN skontrolujte, či je aktívny dostupný router, a zabezpečte, aby malo používateľské rozhranie k dispozícii dobré spojenie s bezdrôtovými signálmi. Keď je produkt pripojený k sieti, zabezpečte, aby bol k nemu váš telefón čo najbližšie. NØRDIS v súčasnosti podporuje iba routre s frekvenciou 2,4 GHz. Neodporúča sa, aby boli súčasťou názvu WLAN špeciálne znaky (bodky, medzery a podobne). Odporúča sa, aby ste k jednému routeru pripojili maximálne 10 zariadení, pretože slabý alebo nestabilný signál siete môže negatívne ovplyvniť domáce spotrebiče. Ak sa zmení heslo routera alebo WLAN, vymažte všetky nastavenia a zariadenie resetujte. Rozhranie aplikácie sa v dôsledku aktualizácií z času na čas mení, a tak sa môže mierne líšiť od toho, čo je zobrazené v tomto dokumente.

9.1 Inštalácia aplikácie

Naskenujte tento QR kódlebo v APP STORE alebo GOOGLE PLAY vyhľadajte aplikáciu "COMFORT HOME" a nainštalujte ju.

9.2 Prihlásenie

Po nainštalovaní aplikácie si aplikáciu otvorte a prihláste sa do nej.

1535 🖻 🖗 🛦 🔸		
Please enter t name of the otherwise enter if you do not i brand na	he brand device, "customer" (now the ime	
	z	adajte "Nordis"
Nordis		
Please provide the brand n device?	ame of your	
ок		
1535 BIRA - Red Room	S	
---	-------------------	---
Enter your email		
Se Enter password	**	
I had read and agreed on Privacy Polic Software License and User Service Age	ry and reement	Ak ste si ešte nevytvorili účet v COMFORT HOME, kliknite na Sign Up a vytvorte si nový
Forgot password	ember Me	účet. Ak ste si už účet vytvorili, prihláste sa svojím e-mailom a heslom.
Login with social media		
f 🖉		
Don't you have an account ? sign up t	Now!	

9.3 Pridajte zariadenie a prihláste sa na domácu Wi-Fi.

9.4 Nastavenie používateľského rozhrania

Prejdite do **MENU** > **WLAN SETTING** > **AP MODE**. Stlačte **OK**, aby ste aktivovali WLAN. Pozrite obrázok 3-8.1. Zvoľte **YES**, stlačte **OK**, aby sa vybral režim AP mode. Rovnako zvoľte **AP Mode** v mobilnom zariadení a pokračujte v ďalších nastaveniach podľa výziev aplikácie. Počas procesu Wireless distribution bliká na displeji LCD ikonka "" **S**", čo znamená, že dochádza k pripojeniu k sieti. Po ukončení procesu bude ikonka "" **S**" nepretržite svietiť.

< Connect device

 The home appliance has sent out wi-fi signal, please connect your mobile phone to this wi-fi

WLAN: net_xxx_xxxx Password: 12345678

(2) After successful connection MSmartLife to start the cor

Kliknite sem a pripojte telefón k novej Wi-Fi.

Connect your appliance to WiFi

9.4.2 Dokončenie

10 Pokyny pre USB function

10.1 Prenos nastavených parametrov medzi používateľskými rozhraniami

Technikovi stačí cez USB rýchlo skopírovať nastavené parametre používateľského rozhrania z jednotky A na jednotku B, čím sa šetrí čas pri inštalácii na mieste. Postupuje sa takto:

Krok č. 1:

Zapojte disk U do portu na PCB hydraulického systému jednotky A.

Na digitálnom displeji sa zobrazí "USb".

Používateľské rozhranie sa automaticky zmení.

USB FUNCTION	
READ SET PARAMETER	
WRITE SET PARAMETER	
	F

Krok č. 2:

Zvoľte "READ SET PARAMETER" a stlačte tlačidlo "OK". Potom sa zobrazí percento postupu. Po skončení procesu sa dole zobrazí "SUCCESS" a na USB sa vytvorí súbor vo formáte EXCEL, ktorý nie je vidno v používateľskom rozhraní, ale používatelia si ho môžu nájsť v počítači.

3%
¢

Zvolte "READ SET PARAMETER".

USB FUNCTION	
READ SET PARAMETER	
WRITE SET PARAMETER	
	ŧ
•	

Hotovo.

Vytvorený súbor vo formáte EXCEL.

M_Thermal_Config(Prohibit to rewrite)
PD25319B84M200415V24
PD25319B86M200421V35

Ak je potrebné upraviť nejaký parameter, pripojte k počítaču USB a otvorte súbor vo formáte EXCEL. Zmeňte v ňom parametre a uložte ho. Nemeňte názov ani formát súboru. Parametre nesmú meniť ľudia, ktorí nie sú profesionáli. Spoločnosť NØRDIS odporúča meniť parametre pomocou používateľského rozhrania.

Krok č. 3:

Zasuňte USB do portu PCB hydraulického systému jednotky B a zvoľte "WRITE SET PARAMETER". Potom sa zobrazí percento postupu. Keď sa proces dokončí, dole sa zobrazí "SUCCESS".

Zvoľte "WRITE SET PARAMETER".

25%	
-	

USB FUNCTIO		
WRITE SET P	ARAMETER	
	SUCCESS	

Hotovo.

10.2 Výhodná inovácia programu jednotky

Na inováciu programu nie je potrebné priniesť žiadne zložité zariadenia, stačí len USB. Postupuje sa takto:

Krok č. 1:

Nahrajte nový program do koreňového adresára na disku U, kde nie sú povolené iné súbory v bin formáte.

Krok č. 2:

Zapnite a skontrolujte, či komunikácia prebieha normálne.

Krok č. 3:

Zapojte disk U do portu na PCB hydraulického systému.

Na digitálnom displeji sa zobrazí "USb".

Krok č. 4:

Rozlišujte medzi programami pre hlavnú riadiacu dosku PCB a PCB hydraulického systému. Vyberte jednu z nich a stlačte tlačidlo "OK". Potom sa zobrazí percento postupu. Keď sa proces dokončí, dole sa zobrazí "SUCCESS". Proces inovácie vonkajšej jednotky trvá zvyčajne niekoľko minút. Pri vnútornej jednotke je potrebných iba niekoľko sekúnd.

Krok č. 5:

Vyberte disk U a znovu zapnite, aby sa inovácia dokončila. Skontrolujte verziu programu, aby ste zistili, či inovácia prebehla úspešne.

Skontrolujte verziu softvéru IDU.

OPERATION PARAMETER	#00
Tbt1 BUFFERTANK_UP TEMP.	XX °C
Tbt2 BUFFERTANK_LOW TEMP.	XX °C
Tsolar	XX °C
IDU SOFTWARE XX-XX-2	< X X X X X X X X X X X X X X X X X X X
▲ ADDRESS	5/9 🖨

Skontrolujte verziu softvéru ODU.

Používateľské rozhranie sa automaticky zmení.

METER	#00
NGE TEMP.	XX °C
MP	XX °C
	XX °C
RE	XX Kpa
XX-XX-X	XXXXXX
XX-XX-X	XXXXXX
	9/9 🖨
	METER NGE TEMP. MP RE XX-XX-XX XX-XX-X

11 Príloha

11.1 Krivky teploty okolitého prostredia

Krivky súvisiace s podnebím je možné zvoliť v používateľskom rozhraní v časti **MENU > PRESET TEMPERATURE > WEATHER TEMP. SET**.

V režime chladenia/vykurovania je možné zvoliť osem kriviek, ktoré sú už zadané v používateľskom rozhraní. Keď sa zvolí krivka, nastavená teplota vody na výstupe (T1s) sa určí podľa vonkajšej teploty (T4).

Režim ECO je vhodný iba pre režim vykurovania. V programe je preň nastavená nižšia teplota vody, čím sa viac šetrí energia.

Vzťah medzi teplotou vonkajšieho prostredia (T4) a nastavenou teplotou vody na výstupe (T1s) je opísaný na obrázku 3-11.2, obrázku 3-11.3, obrázku 3-11.4 a obrázku 3-11.5.

Krivky automatického nastavenia sú deviatou krivkou pre režim chladenia a vykurovania, deviatu krivku je možné nastaviť podľa znázornenia na obrázku 3-11.6 a obrázku 3-11.7.

Obrázok 3-11.2: Krivky nízkej teploty pre režim vykurovania¹

Poznámky:

- 1. Sú nastavené iba krivky nízkej teploty pre vykurovanie, ak je pre vykurovanie nastavená nízka teplota.
- 2. Krivka 4 je predvolená v režime vykurovania s nízkou teplotou a krivka 6 je predvolená v režime ECO.

Poznámky:

- 1. Sú nastavené iba krivky vysokej teploty pre vykurovanie, ak je pre vykurovanie nastavená vysoká teplota.
- 2. Krivka 4 je predvolená v režime vykurovania s vysokou teplotou a krivka 6 je predvolená v režime ECO.

Obrázok 3-11.4: Krivky nízkej teploty pre režim chladenia¹

Poznámky:

1. Sú nastavené iba krivky nízkej teploty pre chladenie, ak je pre chladenie nastavená nízka teplota.

2. Krivka 4 je predvolená v režime chladenia s nízkou teplotou.

Obrázok 3-11.5: Krivky vysokej teploty pre režim chladenia¹

Poznámky:

- 1. Sú nastavené iba krivky vysokej teploty pre chladenie, ak je pre chladenie nastavená vysoká teplota.
- 2. Krivka 4 je predvolená v režime chladenia s vysokou teplotou.

K dispozícii je jedna prispôsobená krivka, ktorú si môže nastaviť používateľ podľa spôsobu používania. Na vytvorenie prispôsobenej krivky musia používatelia zadať iba teplotu okolia a požadovanú teplotu vody pre dve pracovné podmienky. Nastavenie T1SETH1, T1SETH2, T4H1, T4H2 pozrite v časti 3, 8.6 "Ponuka HEATING MODE SETTING" a T1SETC1, T1SETC2, T4C1, T4C2 pozrite v časti 3, 8.5 "Ponuka COOLING MODE SETTING".

12 Tabuľka chybových kódov

Tabuľka 3-12.1: Tabuľka chybových kódov

Chybový kód	Obsah ²
bH	chyba PCB PED
C7	ochrana modulu invertora pred vysokou teplotou
EO	porucha prietoku (E8 sa zobrazí 3-krát)
E1	výpadok fázy alebo neutrálny a živý vodič boli zapojené naopak (iba trojfázová jednotka)
E2	chyba komunikácie medzi rozhraním a hlavnou riadiacou doskou pre hydraulický modul
E3	chyba snímača teploty výpustu vody na výstupe (T1)
E4	chyba snímača teploty zásobníka vody (T5)
E5	chyba snímača teploty na výstupe chladiva kondenzátora (T3)
E6	chyba snímača teploty prostredia (T4)
E7	chyba horného snímača teploty vo vyvažovacej nádobe (Tbt1)
E8	chyba prietoku vody
E9	chyba snímača teploty nasávaného vzduchu kompresora (Th)
EA	chyba snímača teploty vyfukovaného vzduchu kompresora (Tp)
Eb	chyba snímača teploty solárneho panela (Tsolar)
Ec	chyba dolného snímača teploty vyvažovacej nádoby (Tbt2)
Ed	chyba snímača teploty privádzanej vody doskového výmenníka (Tw_in)
EE.	chyba EEPROM hlavnej riadiacej dosky pre hydraulický modul
F1	ochrana DC zbernice pred nízkym napätím
НО	chyba komunikácie medzi hlavnou riadiacou doskou pre hydraulický modul a hlavnou riadiacou doskou PCB B (hlavná
	riadiaca doska jednotky)
H1	chyba komunikácie medzi modulom invertora PCB A (modul invertora) a hlavnou riadiacou doskou PCB B (hlavná
	riadiaca doska jednotky)
H2	chyba snímača teploty výstupu chladiva doskového výmenníka (rúrka na tekutinu) (T2)
H3	chyba snímača teploty výstupu chladiva doskového výmenníka (rúrka na plyn) (T2B)
H4	trikrát ochrana P6
H5	chyba snímača izbovej teploty (Ta)
H6	chyba DC motora ventilátora
H7	chyba napäťovej ochrany hlavného okruhu
H8	chyba snímača tlaku
H9	chyba snímača teploty prietoku vody v zóne 2 (Tw2)
HA	chyba snímača teploty vody vo vratnom potrubí doskového výmenníka tepla (Tw_out)
Hb	trikrát ochrana "PP" a Tw_out $< 7 ^{\circ}$ C
Hd	chyba komunikácie jednotiek master a slave (paralelne)
HE	chyba komunikácie medzi vnútornou jednotkou a prenosovou PCB Ta/izbového termostatu.
HF	porucha EEPROM na doske modulu invertora
НН	H6 sa zobrazí 10-krát počas 120 minút
HP	ochrana pred nízkym tlakom (Pe<0,6) sa zobrazí v režime chladenia 3-krát za 1 hodinu
PO	ochrana pred nízkym tlakom
P1	ochrana pred vysokým tlakom
P3	ochrana kompresora pred nadprúdom
P4	ochrana pred príliš vysokou teplotu vyfukovaného vzduchu kompresora
P5	ochrana pri veľkom rozdiele teploty medzi vodou v prívodnom a vratnom potrubí doskového výmenníka tepla

OPTIMUS	PRO Mono
P6	ochrana modulu invertora
Pb	ochrana režimu proti zamrznutiu
Pd	ochrana pred vysokou teplotou pre teplotu výstupu chladiva z kondenzátora
РР	teplota vody v prívodnom potrubí je vyššia ako teplota vody vo vratnom potrubí v režime vykurovania
LO	chyba modulu DC invertorového kompresora
L1	ochrana DC zbernice pred nízkym napätím (z modulu invertora, hlavne keď beží kompresor)
L2	ochrana DC zbernice pred vysokým napätím z DC ovládača
L4	chyba MCE
L5	ochrana proti nulovej rýchlosti
L7	chybné poradie fáz
L8	ochrana pri zmene frekvencie kompresora, ktorá je za 1 sekundu vyššia ako 15 Hz
L9	ochrana, keď sa skutočná frekvencia kompresora líši od cieľovej frekvencie o viac ako 15 Hz

